yolo v5 data coordinate format
ex)
Thank you.
https://study.marearts.com
yolo v5 data coordinate format
ex)
Thank you.
https://study.marearts.com
python code
.
.
result
0 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000253429_jpg.rf.7f12980ae02c096d1b9ac0b574d3ac1b.txt Line1: 10 0.6768149882903981 0.2203125 0.6463700234192038 0.196875 Line2: 36 0.32786885245901637 0.67265625 0.6557377049180327 0.6359375 Line3: 48 0.34543325526932084 0.57578125 0.36533957845433257 0.6765625 1 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000009465_jpg.rf.3d5a6b94f8c1afdc004f2641cd578912.txt Line1: 36 0.6703125 0.8002309468822171 0.2109375 0.22170900692840648 Line2: 73 0.06015625 0.684757505773672 0.1171875 0.42494226327944573 Line3: 48 0.16484375 0.7621247113163973 0.04375 0.16166281755196305 Line4: 48 0.24921875 0.7829099307159353 0.0296875 0.16628175519630484 Line5: 48 0.2234375 0.7736720554272517 0.0359375 0.17090069284064666 Line6: 48 0.19765625 0.76905311778291 0.03125 0.16628175519630484 Line7: 48 0.1265625 0.7840646651270208 0.075 0.20554272517321015 2 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000009466_jpg.rf.5b49bdd7c037ed299dd3b6fd2531c34d.txt Line1: 20 0.2625 0.45433255269320844 0.3078125 0.4496487119437939 3 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000009469_jpg.rf.38d5d254d972459fba2431d6ed2baffe.txt Line1: 27 0.262 0.7878048780487805 0.314 0.3853658536585366 Line2: 48 0.304 0.5146341463414634 0.282 0.9170731707317074 4 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000009474_jpg.rf.fe5b0057cd113427b333ccd60c2d10d5.txt Line1: 10 0.3203125 0.5530660377358491 0.2953125 0.8702830188679245 5 /MareArts/dev/dataset/coco_yolov5pytorch/train/labels/000000009478_jpg.rf.1584a7148b62cc3612da3407115b14b7.txt Line1: 33 0.52421875 0.5612745098039216 0.21875 0.44607843137254904
...
...
Thank you.
https://study.marearts.com
#method 1
import tensorflow as tf
tf.test.is_built_with_cuda()
> Ture
#method 2
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
> ..
#method 3
import torch
torch.cuda.is_available()
>>> True
torch.cuda.current_device()
>>> 0
torch.cuda.device(0)
>>> <torch.cuda.device at 0x7efce0b03be0>
torch.cuda.device_count()
>>> 1
torch.cuda.get_device_name(0)
>>> 'GeForce GTX 950M'
Thank you.
www.MareArts.com
do it on your terminal
$ export OLD_PS1=$PS1 # save Long Prompt to OLD_PS1
$ export PS1="\u > "export PS1="\u $ " # change to PS1 to Short Prompt
$ export PS1=$OLD_PS1 # restore Long Prompt to PS1
issue:
curlpp/cURLpp.hpp: No such file or directory
solution:
install package which related with curl
> sudo apt-get install pkg-config libcurlpp-dev libcurl4-openssl-dev
* Check header file location
> dpkg -S cURLpp.hpp
libcurlpp-dev:amd64: /usr/include/curlpp/cURLpp.hpp
Thank you.
study.marearts.com
marearts
In my case, I failed to get Mac from eth0 devices.
So I need to check all devices to get Mac address.
This is my solution example code:
(study.marearts.com)
..
..
Output is
44-a5-6e-63-a4-bb
Thank you.
marearts
Refer to load & save function.
..
..
Thank you!!
☕️
> sudo apt-get install g++
errors like that:
> gcc -o test main.cpp
/usr/bin/ld: /tmp/ccoMmwaL.o: in function `__static_initialization_and_destruction_0(int, int)':
main.cpp:(.text+0x3f): undefined reference to `std::ios_base::Init::Init()'
/usr/bin/ld: main.cpp:(.text+0x54): undefined reference to `std::ios_base::Init::~Init()'
collect2: error: ld returned 1 exit status
just replace g++ instead of gcc
> g++ -o test main.cpp
Then it would be fine!.
Thank you!
> apt-get update
> apt-get upgrade
> apt-get install binutils
That's all!!
Make copyall.sh file and make sure chmod is 775.
//
//
And run it like this
./copy_dll.sh ./executableFileName ./copyToHere
That's all
Thank you.