Showing posts with label hipBLASlt. Show all posts
Showing posts with label hipBLASlt. Show all posts

1/17/2025

HipBlasLT type definition explanation


1. About Output Types (D):

No, the output D is not limited to fp32/int32. Looking at the table, D can be:

- fp32

- fp16

- bf16

- fp8

- bf8

- int8


2. Input/Output Patterns:

When A is fp16, you have two options:

```

Option 1:

A: fp16 → B: fp16 → C: fp16 → D: fp16 → Compute: fp32


Option 2:

A: fp16 → B: fp16 → C: fp16 → D: fp32 → Compute: fp32

```


The compute/scale is always higher precision (fp32 or int32) to maintain accuracy during calculations, even if inputs/outputs are lower precision.


3. Key Patterns in the Table:

- Inputs A and B must always match in type

- C typically matches A and B, except with fp8/bf8 inputs

- When using fp8/bf8 inputs, C and D can be higher precision (fp32, fp16, or bf16)

- The compute precision is always fp32 for floating point types

- For integer operations (int8), the compute precision is int32


4. Why Different Combinations?

- Performance: Lower precision (fp16, fp8) = faster computation + less memory

- Accuracy: Higher precision (fp32) = better accuracy but slower

- Memory Usage: fp16/fp8 use less memory than fp32

- Mixed Precision: Use lower precision for inputs but higher precision for output to balance speed and accuracy


Example Use Cases:

```

High Accuracy Needs:

A(fp32) → B(fp32) → C(fp32) → D(fp32) → Compute(fp32)


Balanced Performance:

A(fp16) → B(fp16) → C(fp16) → D(fp32) → Compute(fp32)


Maximum Performance:

A(fp8) → B(fp8) → C(fp8) → D(fp8) → Compute(fp32)

```


1/15/2025

GEMM, Triton and hipBLASlt and Transformer engine concept


1. GEMM (General Matrix Multiplication):

- This is the basic operation: C = A × B (matrix multiplication)

- Fundamental operation in deep learning, especially transformers

- Core computation in attention mechanisms, linear layers, etc.


2. Triton:

- A programming language for writing GPU kernels

- Lets you write your own custom GEMM implementation

- You control memory layout, tiling, etc.

- Example use: When you need a very specific matrix operation


3. hipBLASLt:

- A specialized library just for matrix operations

- Pre-built, highly optimized GEMM implementations

- Focuses on performance for common matrix sizes

- Example use: When you need fast, standard matrix multiplication


4. Transformer Engine:

- NVIDIA's specialized library for transformer models

- Automatically handles precision switching (FP8/FP16/FP32)

- Optimizes GEMM operations specifically for transformer architectures

- Includes specialized kernels for attention and linear layers

- Example use: When building large language models


The relationship:

```

Transformer Model

    ↓

Transformer Engine

    ↓

GEMM Operations (can be implemented via:)

    ↓

hipBLASLt / Triton / Other libraries

    ↓

GPU Hardware

```


the same matrix multiplication would be implemented using different approaches:


1. Basic GEMM Operation (what we want to compute):

```python

# C = A × B

# Where A is (M×K) and B is (K×N)

```


2. Using Triton (Custom implementation):

```python

@triton.jit

def matmul_kernel(

    a_ptr, b_ptr, c_ptr,    # Pointers to matrices

    M, N, K,                # Matrix dimensions

    stride_am, stride_ak,   # Memory strides for A

    stride_bk, stride_bn,   # Memory strides for B

    stride_cm, stride_cn,   # Memory strides for C

    BLOCK_SIZE: tl.constexpr,

):

    # Get program ID

    pid = tl.program_id(0)

    # Calculate block indices

    block_i = pid // (N // BLOCK_SIZE)

    block_j = pid % (N // BLOCK_SIZE)

    # Load blocks from A and B

    a = tl.load(a_ptr + ...)  # Load block from A

    b = tl.load(b_ptr + ...)  # Load block from B

    # Compute block multiplication

    c = tl.dot(a, b)          # Matrix multiply

    # Store result

    tl.store(c_ptr + ..., c)

```


3. Using hipBLASLt:

```cpp

// Initialize hipBLASLt

hipblasLtHandle_t handle;

hipblasLtCreate(&handle);


// Define matrix layout

hipblasLtMatrixLayout_t matA, matB, matC;

hipblasLtMatrixLayoutCreate(&matA, HIPBLAS_LT_R_16F, M, K, M);

hipblasLtMatrixLayoutCreate(&matB, HIPBLAS_LT_R_16F, K, N, K);

hipblasLtMatrixLayoutCreate(&matC, HIPBLAS_LT_R_16F, M, N, M);


// Execute GEMM

hipblasLtMatmul(

    handle,

    matmulDesc,

    &alpha,        // Scale factor

    A, matA,       // Input matrix A

    B, matB,       // Input matrix B

    &beta,         // Scale factor

    C, matC,       // Output matrix C

    workspace,     // Temporary workspace

    streams        // CUDA stream

);

```


4. Using Transformer Engine:

```python

import transformer_engine.pytorch as te


# Create TE layers

linear = te.Linear(in_features, out_features)


# Automatic precision handling

with te.fp8_autocast():

    output = linear(input)  # Internally uses optimized GEMM

```


Key differences:

1. Triton: You control everything (memory, blocks, compute)

2. hipBLASLt: Pre-optimized, you just call it

3. Transformer Engine: High-level, handles precision automatically


Performance comparison (general case):

```

Speed: hipBLASLt > Transformer Engine > Custom Triton

Flexibility: Triton > hipBLASLt > Transformer Engine

Ease of use: Transformer Engine > hipBLASLt > Triton

```