10/24/2023

hugging face onnx exporting model quantisation method

 refer to example code


.


from functools import partial
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTQuantizer, ORTModelForSequenceClassification
from optimum.onnxruntime.configuration import AutoQuantizationConfig, AutoCalibrationConfig

model_id = "distilbert-base-uncased-finetuned-sst-2-english"

onnx_model = ORTModelForSequenceClassification.from_pretrained(model_id, export=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
quantizer = ORTQuantizer.from_pretrained(onnx_model)
qconfig = AutoQuantizationConfig.arm64(is_static=True, per_channel=False)

def preprocess_fn(ex, tokenizer):
return tokenizer(ex["sentence"])

calibration_dataset = quantizer.get_calibration_dataset(
"glue",
dataset_config_name="sst2",
preprocess_function=partial(preprocess_fn, tokenizer=tokenizer),
num_samples=50,
dataset_split="train",
)

calibration_config = AutoCalibrationConfig.minmax(calibration_dataset)

ranges = quantizer.fit(
dataset=calibration_dataset,
calibration_config=calibration_config,
operators_to_quantize=qconfig.operators_to_quantize,
)

model_quantized_path = quantizer.quantize(
save_dir="path/to/output/model",
calibration_tensors_range=ranges,
quantization_config=qconfig,
)

..

options for several instructions

.



optimum-cli onnxruntime quantize --help
usage: optimum-cli <command> [<args>] onnxruntime quantize [-h] --onnx_model ONNX_MODEL -o OUTPUT [--per_channel] (--arm64 | --avx2 | --avx512 | --avx512_vnni | --tensorrt | -c CONFIG)

options:
-h, --help show this help message and exit
--arm64 Quantization for the ARM64 architecture.
--avx2 Quantization with AVX-2 instructions.
--avx512 Quantization with AVX-512 instructions.
--avx512_vnni Quantization with AVX-512 and VNNI instructions.
--tensorrt Quantization for NVIDIA TensorRT optimizer.
-c CONFIG, --config CONFIG
`ORTConfig` file to use to optimize the model.

Required arguments:
--onnx_model ONNX_MODEL
Path to the repository where the ONNX models to quantize are located.
-o OUTPUT, --output OUTPUT
Path to the directory where to store generated ONNX model.

Optional arguments:
--per_channel Compute the quantization parameters on a per-channel basis.

..


refer to this page for details:

https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization#quantize-seq2seq-models



refer to this code as well

.

you may be able to get idea. 

# Export to ONNX
model = ORTModelForSeq2SeqLM.from_pretrained(model_path, from_transformers=True, export=True, provider='CUDAExecutionProvider').to(device)
model.save_pretrained(onnx_path)

# quantization code
encoder_quantizer = ORTQuantizer.from_pretrained(onnx_path, file_name='encoder_model.onnx')
decoder_quantizer = ORTQuantizer.from_pretrained(onnx_path, file_name='decoder_model.onnx')
decoder_wp_quantizer = ORTQuantizer.from_pretrained(onnx_path, file_name='decoder_with_past_model.onnx')
quantizer = [encoder_quantizer, decoder_quantizer, decoder_wp_quantizer]
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
for q in quantizer:
q.quantize(save_dir=output_path, quantization_config=dqconfig)


#inference code
model = ORTModelForSeq2SeqLM.from_pretrained(
model_id=model_path,
encoder_file_name='encoder_model_quantized.onnx',
decoder_file_name='decoder_model_quantized.onnx',
decoder_with_past_file_name='decoder_with_past_model_quantized.onnx',
provider='CUDAExecutionProvider',
use_io_binding=True,
).to(self.device)
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-large')

...

dataset = self.dataset(input_dict)
dataset.set_format(type='torch', device=self.device, columns=['input_ids', 'attention_mask'])
data_loader = DataLoader(dataset, batch_size=self.batch_size, collate_fn=self.data_collator)
generated_outputs: List[OUTPUT_TYPE] = []
for i, batch in enumerate(data_loader):
_batch = {key: val.to(self.device) for key, val in batch.items()}
outputs = self.model.generate(**_batch, generation_config=self.generation_config)
decoded_outputs = self.tokenizer.batch_decode(outputs.cpu().tolist(), skip_special_tokens=True)

.

Thank you.

note! quantisation and optimise is different. 


10/23/2023

comparing custom custom_vit_image_processor vs vit_image_processor of tranformers

 check custom image process is same with origin inner processing function in transformers.

.

pixel_values1 = self.feature_extractor(images=image, return_tensors="pt").pixel_values

# Convert numpy array to PyTorch tensor
pixel_values2 = self.custom_vit_image_processor(image)
pixel_values2 = torch.tensor(pixel_values2, dtype=torch.float32).unsqueeze(0) # Add batch dimension and ensure float32 type

# 1. Shape Check
assert pixel_values1.shape == pixel_values2.shape, "The tensors have different shapes
# 2. Absolute Difference
diff = torch.abs(pixel_values1 - pixel_values2)

# 3. Summarize Discrepancies www.marearts.com
mean_diff = torch.mean(diff).item()
max_diff = torch.max(diff).item()
min_diff = torch.min(diff).item()
print(f"Mean Absolute Difference: {mean_diff}")
print(f"Maximum Absolute Difference: {max_diff}")
print(f"Minimum Absolute Difference: {min_diff}")


# Additionally, if you want to see where the maximum difference occurs:
max_diff_position = torch.where(diff == max_diff)
print(f"Position of Maximum Difference: {max_diff_position}")

..


Thank you.

Hope to helpful.


10/17/2023

nerf studio installation error

error:


. VanillaPipeline.get_train_loss_dict: 12.6875 Traceback (most recent call last): File "/home/mare/anaconda3/envs/nerfstudio/bin/ns-train", line 8, in sys.exit(entrypoint()) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py", line 262, in entrypoint main( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py", line 247, in main launch( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py", line 189, in launch main_func(local_rank=0, world_size=world_size, config=config) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py", line 100, in train_loop trainer.train() File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/engine/trainer.py", line 259, in train loss, loss_dict, metrics_dict = self.train_iteration(step) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/utils/profiler.py", line 127, in inner out = func(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/engine/trainer.py", line 479, in train_iteration _, loss_dict, metrics_dict = self.pipeline.get_train_loss_dict(step=step) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/utils/profiler.py", line 127, in inner out = func(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/pipelines/base_pipeline.py", line 298, in get_train_loss_dict ray_bundle, batch = self.datamanager.next_train(step) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/data/datamanagers/base_datamanager.py", line 542, in next_train ray_bundle = self.train_ray_generator(ray_indices) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/model_components/ray_generators.py", line 56, in forward ray_bundle = self.cameras.generate_rays( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/cameras/cameras.py", line 463, in generate_rays raybundle = cameras._generate_rays_from_coords( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/cameras/cameras.py", line 646, in _generate_rays_from_coords coord_stack[coord_mask, :] = camera_utils.radial_and_tangential_undistort( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py", line 328, in _fn return fn(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py", line 490, in catch_errors return callback(frame, cache_entry, hooks, frame_state) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 641, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 389, in _convert_frame_assert return _compile( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 569, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 491, in compile_inner out_code = transform_code_object(code, transform) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/convert_frame.py", line 458, in transform tracer.run() File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/symbolic_convert.py", line 2074, in run super().run() File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/symbolic_convert.py", line 2162, in RETURN_VALUE self.output.compile_subgraph( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/output_graph.py", line 833, in compile_subgraph self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/contextlib.py", line 75, in inner return func(*args, **kwds) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/output_graph.py", line 957, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/output_graph.py", line 1024, in call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/output_graph.py", line 1009, in call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper compiled_gm = compiler_fn(gm, example_inputs) File "/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/torch/__init__.py", line 1607, in __call__ return self.compiler_fn(model_, inputs_, **self.kwargs) torch._dynamo.exc.BackendCompilerFailed: backend='eager' raised: TypeError: eager() got an unexpected keyword argument 'mode' Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ..

Solution

* find where train.py is installed
(nerfstudio) mare@mare>NerfStudio$ find /home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/ -name 'train.py'

in my case it installed in here:
/home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py
(nerfstudio) 


* edit train.py code 
nano /home/mare/anaconda3/envs/nerfstudio/lib/python3.8/site-packages/nerfstudio/scripts/train.py

add this two line on top of code
import torch._dynamo
torch._dynamo.config.suppress_errors = True

ok it's my solution.


Thank you.
www.marearts.com




10/08/2023

round to first significant decimal

The code extract first found and convert to 1

ex)

Input: 0.02323, Output: 0.01
Input: 0.0023, Output: 0.001
Input: 23, Output: 1
Input: 0.0042323, Output: 0.001

..

 refer to this code:

def custom_marearts_round(number):
# Ensure number is a float
float_number = float(number)

# If number is zero, return it as is
if number == 0:
return 0
# If the number is an integer, return 1
elif float_number.is_integer():
return 1
# Convert the number to exponential notation
exponential_notation = f'{float_number:.1e}'
# Extract the exponent part and convert to int
exponent = int(exponential_notation.split('e')[-1])
# Convert to desired output format
result = float(f'1e{exponent}')
return result

# Examples:
input1 = 0.02323
output1 = custom_marearts_round(input1)
print(f"Input: {input1}, Output: {output1}")

input2 = 0.0023
output2 = custom_marearts_round(input2)
print(f"Input: {input2}, Output: {output2}")

input3 = 23
output3 = custom_marearts_round(input3)
print(f"Input: {input3}, Output: {output3}")

input4 = 0.0042323
output4 = custom_marearts_round(input4)
print(f"Input: {input4}, Output: {output4}")



..



๐Ÿ™‡๐Ÿป‍♂️ Thank you

www.marearts.com


9/27/2023

9/26/2023

QR detector python code

 refer to code:


.

import cv2
#pip install pyzbar
from pyzbar.pyzbar import decode

def scan_qr_code():
# Start the webcam
cap = cv2.VideoCapture(0)
cap.set(3, 640) # Set the width of the window
cap.set(4, 480) # Set the height of the window
while True:
success, img = cap.read()
if not success:
print("Failed to grab frame")
break
# Decode the QR Code
for barcode in decode(img):
# Get the QR Code position
my_data = barcode.data.decode('utf-8')
pts = barcode.polygon
if len(pts) == 4: # If we have 4 points, then we have a QR code
pts2 = barcode.rect
cv2.putText(img, my_data, (pts2[0], pts2[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 255), 2)
for point in pts:
cv2.circle(img, (point[0], point[1]), 5, (0, 255, 0), cv2.FILLED)
# Display the frame
cv2.imshow('QR Code Scanner', img)
if cv2.waitKey(1) & 0xFF == ord('q'): # Press 'q' to quit
break
cap.release()
cv2.destroyAllWindows()

if __name__ == "__main__":
scan_qr_code()

..


you need to install pyzbar


Thank you.

www.marearts.com

๐Ÿ™‡๐Ÿป‍♂️




9/23/2023

python code to convert heic (Mac image) to jpeg

 refer to code:


.

# pip install pyheif pillow
# brew install libheif



import os
import subprocess

input_folder = "./input/path"
output_folder = "./output/path"

if not os.path.exists(output_folder):
os.makedirs(output_folder)

for filename in os.listdir(input_folder):
if filename.endswith(".heic") or filename.endswith(".HEIC"):
heic_path = os.path.join(input_folder, filename)
jpeg_path = os.path.join(output_folder, os.path.splitext(filename)[0] + ".jpg")

# Run heif-convert to convert the HEIC file to JPEG
subprocess.run(["heif-convert", heic_path, jpeg_path])

print("Conversion complete!")


..


Thank you.



9/22/2023

Download Youtube Video, url to local video file.

The code need to install two YouTube downloader package.

Those are pytube, youtube_dl.

This code try to use one of them because sometime it's fail in certain library.


Enjoy code:

.

import ssl
from pytube import YouTube
import youtube_dl

#pip install pytube
#pip install youtube_dl


def configure_ssl():
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context

def pytube_download(video_url):
try:
yt = YouTube(video_url)
video = yt.streams.get_highest_resolution()
print(f"Downloading: {video.title}")
video.download()
print("Video downloaded successfully using pytube.")
return True
except Exception as e:
print(f"An error occurred while downloading the video with pytube: {e}")
return False

def download_youtube_video(video_url):
download_options = {
'format': 'best',
'outtmpl': '%(title)s-%(id)s.%(ext)s', # Set the output filename format
'progress_hooks': [hook],
}

try:
with youtube_dl.YoutubeDL(download_options) as ydl:
ydl.download([video_url])
print("Video downloaded successfully using youtube-dl.")
except Exception as e:
print(f"An error occurred while downloading the video with youtube-dl: {e}")

def hook(d):
if d['status'] == 'downloading':
print(d['_percent_str'], end="\r")

def main(video_url):
configure_ssl()
if not pytube_download(video_url):
download_youtube_video(video_url)

# Example usage:
if __name__ == "__main__":
video_url = 'https://youtu.be/MareArts' # Add your video url here
main(video_url)

..


Thank you.

www.marearts.com

๐Ÿ™‡๐Ÿป‍♂️

9/19/2023

3D mesh generation form 3D cloud points, using open3D

 refer to code


.

import open3d as o3d
import numpy as np
import os

def load_point_cloud(file_path):
print("Loading point cloud...")
return o3d.io.read_point_cloud(file_path)

def estimate_normals(pcd):
print("Estimating normals...")
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
return pcd

def remove_invalid_normals(pcd):
print("Removing invalid normals...")
valid_indices = np.where(np.linalg.norm(np.asarray(pcd.normals), axis=1) != 0)[0]
return pcd.select_by_index(valid_indices)

def poisson_reconstruction(pcd):
print("Performing Poisson surface reconstruction...")
mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=8)
return mesh

def simplify_mesh(mesh):
print("Simplifying mesh...")
return mesh.simplify_quadric_decimation(target_number_of_triangles=10000)

def save_mesh(mesh, file_path):
print(f"Mesh saved to '{file_path}'")
o3d.io.write_triangle_mesh(file_path, mesh)

def main():
file_path = "/path/3d_cloud.ply"
pcd = load_point_cloud(file_path)
pcd = estimate_normals(pcd)
pcd = remove_invalid_normals(pcd)
mesh = poisson_reconstruction(pcd)
mesh = simplify_mesh(mesh)
mesh_file = os.path.join(os.path.dirname(file_path), 'mesh.ply')
save_mesh(mesh, mesh_file)

if __name__ == "__main__":
main()

..


install open3d using pip install open3d


Thank you.

www.marearts.com

๐Ÿ™‡๐Ÿป‍♂️

print image exif python code

 refer to code:


.

from PIL import Image, ExifTags
import os

def print_exif_data(directory_path):
"""
Print the EXIF data of every JPEG image in the given directory.
Args:
directory_path (str): Path to the directory containing JPEG images.
"""
# Loop through all files in the directory
for filename in os.listdir(directory_path):
if filename.lower().endswith('.jpg') or filename.lower().endswith('.jpeg'):
filepath = os.path.join(directory_path, filename)
# Open image file
image = Image.open(filepath)
# Extract EXIF data
exif_data = image._getexif()
if exif_data is not None:
# Print EXIF data
print(f"EXIF data for {filename}:")
for tag_id, value in exif_data.items():
tag_name = ExifTags.TAGS.get(tag_id, tag_id)
print(f"{tag_name} ({tag_id}): {value}")
print('-' * 50)
else:
print(f"No EXIF data found for {filename}")
print('-' * 50)

if __name__ == "__main__":
# Define the directory path
directory_path = "/your_path/images"
# Print EXIF data
print_exif_data(directory_path)

..


this is example result 

.




EXIF data for IMG_5602.JPG:
ResolutionUnit (296): 2
ExifOffset (34665): 224
Make (271): Apple
Model (272): iPhone 12 Pro
Software (305): 16.6.1
Orientation (274): 6
DateTime (306): 2023:09:18 16:32:55
YCbCrPositioning (531): 1
XResolution (282): 72.0
YResolution (283): 72.0
HostComputer (316): iPhone 12 Pro
ExifVersion (36864): b'0232'
ComponentsConfiguration (37121): b'\x01\x02\x03\x00'
ShutterSpeedValue (37377): 5.915630897377497
DateTimeOriginal (36867): 2023:09:18 16:32:55
DateTimeDigitized (36868): 2023:09:18 16:32:55
ApertureValue (37378): 1.3561438092556088
BrightnessValue (37379): 2.0295000055765606
ExposureBiasValue (37380): 0.0
MeteringMode (37383): 5
Flash (37385): 16
FocalLength (37386): 4.2
ColorSpace (40961): 65535
ExifImageWidth (40962): 4032
FocalLengthIn35mmFilm (41989): 26
SceneCaptureType (41990): 0
OffsetTime (36880): +03:00
OffsetTimeOriginal (36881): +03:00
OffsetTimeDigitized (36882): +03:00
SubsecTimeOriginal (37521): 447
SubsecTimeDigitized (37522): 447
ExifImageHeight (40963): 3024
SensingMethod (41495): 2
ExposureTime (33434): 0.016666666666666666
FNumber (33437): 1.6
SceneType (41729): b'\x01'
ExposureProgram (34850): 2
ISOSpeedRatings (34855): 160
ExposureMode (41986): 0
FlashPixVersion (40960): b'0100'
WhiteBalance (41987): 0
LensSpecification (42034): (4.2, 4.2, 1.6, 1.6)
LensMake (42035): Apple
LensModel (42036): iPhone 12 Pro back camera 4.2mm f/1.6
MakerNote (37500): b"Apple iOS\x00\x00\x01MM\x00,\x00\x01\x00\t\x00\x00\x00\x0....

..


this is code to update exif

.

from PIL import Image
from PIL.ExifTags import TAGS, TAGS_V2

def update_exif_dimensions(image_path):
# Open the image
img = Image.open(image_path)
# Get EXIF data
exif_data = img._getexif()
# Convert it to a dictionary for easier access
exif_dict = {TAGS.get(k, k): v for k, v in exif_data.items()}
# Update ExifImageWidth and ExifImageHeight with actual dimensions
exif_dict['ExifImageWidth'] = img.width
exif_dict['ExifImageHeight'] = img.height
# Update the EXIF data in the image
img._getexif().update(exif_dict)
# Save the image with updated EXIF data
img.save(image_path)

# Update for a specific image
image_path = "path/to/your/image.jpg" # Replace with the actual path to your image
update_exif_dimensions(image_path)


..


Thank you.

๐Ÿ™‡๐Ÿป‍♂️

www.marearts.com

9/14/2023

convert you opencv camera calibration yaml file to openSFM camera.json file

 refer to code:


.

from PIL import Image
import json
import yaml
import os
import argparse

def get_image_dimensions(image_path):
with Image.open(image_path) as img:
return img.size

def convert_yaml_to_opensfm_json(yaml_file, json_file, image_path):
image_width, image_height = get_image_dimensions(image_path)

with open(yaml_file, 'r') as f:
calibration_data = yaml.safe_load(f)

# Extract the camera matrix and distortion coefficients
camera_matrix = calibration_data['camera_matrix']
dist_coeff = calibration_data['dist_coeff']

# Compute the normalized focal length
focal_normalized = camera_matrix[0][0] / image_width

# Prepare the JSON data
json_data = {
f"custom_camera {image_width} {image_height} perspective 0.0": {
"projection_type": "perspective",
"width": image_width,
"height": image_height,
"focal": focal_normalized,
"k1": dist_coeff[0][0],
"k2": dist_coeff[0][1]
}
}

# Write the JSON data to file
with open(json_file, 'w') as f:
json.dump(json_data, f, indent=4)

def main():
yaml_file="calibration.yaml"
json_file="./camera_models.json"
image_path="IMG_5306.JPG"
convert_yaml_to_opensfm_json(yaml_file, json_file, image_path)

if __name__ == '__main__':
main()

..


reference :

https://github.com/mapillary/OpenSfM/issues/95

https://opensfm.org/docs/geometry.html#camera-models


Thank you.

www.marearts.com

๐Ÿ™‡๐Ÿป‍♂️


python print exponential notation

 refer to code:


-

x = 0.003
formatted_x = "{:.1e}".format(x)
print(formatted_x) # Output will be "3.0e-03"

--