Two view of cam to one screen using stitching algorithm(OpenCV, example source code), (mosaic)

This source code based on ->
http://feelmare.blogspot.kr/2011/08/two-image-mosaic-paranoma-based-on-sift.html
This link page introduces how to make a mosaic image from two adjacent images.
I made two cam video to one stitching video using the source code.

After run, operate the program of 3 keys.
'q' key is quit, 'p' key is processing(stitching), 'r' is reset.








Mat TwoInOneOut(Mat Left, Mat Right);

void main()
{
 VideoCapture stream1(0);   //0 is the id of video device.0 if you have only one camera
 VideoCapture stream2(1);   //0 is the id of video device.0 if you have only one camera
 
 if (!stream1.isOpened()) { //check if video device has been initialised
  cout << "cannot open camera 1";
 }

 if (!stream2.isOpened()) { //check if video device has been initialised
  cout << "cannot open camera 2";
 }


// namedWindow("Processing");
// namedWindow("Left");
// namedWindow("Right");

 Mat H;
 int mode=0;
 //unconditional loop
 while (true) {
  Mat cameraFrame1;
  stream1.read(cameraFrame1); //get one frame form video
  

  Mat cameraFrame2;
  stream2.read(cameraFrame2); //get one frame form video

  if(mode == 0)
  {
   imshow("Left", cameraFrame1);
   imshow("Right", cameraFrame2);
  }

  Mat Left(cameraFrame1.rows, cameraFrame1.cols, CV_8U);
  Mat Right(cameraFrame1.rows, cameraFrame1.cols, CV_8U);
  cvtColor(cameraFrame1, Left, CV_RGB2GRAY, CV_8U);
  cvtColor(cameraFrame2, Right, CV_RGB2GRAY, CV_8U);

  if (waitKey(30) == 'p')
  {
   printf("Homography Matrix Processing\n");
   H = TwoInOneOut(Left, Right);
   mode=1;
   destroyWindow("Left");
   destroyWindow("Right");
  }

  if(waitKey(30) == 'r')
  {
   printf("normal mode\n");
   destroyWindow("Processing");
   mode=0;
  }
  
  //printf("%d %d\n", H.cols, H.rows);
  if(H.cols == 3 && H.rows == 3)
  {
   Mat WarpImg( Left.rows*2, Left.cols*2, cameraFrame1.depth() );
      //printf("%d %d\n", A.depth(), A.channels());
   warpPerspective(cameraFrame2, WarpImg, H, Size(WarpImg.cols, WarpImg.rows));
   Mat tempWarpImg = WarpImg(Rect(0,0,Left.cols,Left.rows));
   cameraFrame1.copyTo(tempWarpImg);

   /*
   Mat WarpImg( Left.rows*2, Left.cols*2, CV_8U);
      //printf("%d %d\n", A.depth(), A.channels());
   warpPerspective(Right, WarpImg, H, Size(WarpImg.cols, WarpImg.rows));
   Mat tempWarpImg = WarpImg(Rect(0,0,Left.cols,Left.rows));
   Left.copyTo(tempWarpImg);
   */
   if(mode ==1)
    imshow("Processing", WarpImg );
  //Mat t = WarpImg( Rect(0,0,B.cols, B.rows));

  }

  //imshow("Processing", t );

  if (waitKey(30) == 'q')
   break;
 }

 destroyAllWindows();
 
 
}


Mat TwoInOneOut(Mat Left, Mat Right)
{
 Mat H;
 

 if(Left.channels() != 1 || Right.channels() != 1)
 {
  printf("Channel Error\n");
  return H;
 }

 /////////////////
 //Detect the keypoints using SURF Detector
    int minHessian = 300; //1500; 
    SurfFeatureDetector detector( minHessian );
 SurfDescriptorExtractor extractor;

 /////////////////
 //A
    std::vector< KeyPoint> kp_Left;
    detector.detect( Left, kp_Left );    
 Mat des_Left;
    extractor.compute( Left, kp_Left, des_Left );

 /////////////////
 //B 
 std::vector< KeyPoint> kp_Right;
 detector.detect( Right, kp_Right );
 Mat des_Right;
 extractor.compute( Right, kp_Right, des_Right );

 /////////////////
 //Match
 std::vector< vector< DMatch > > matches;
 FlannBasedMatcher matcher;
 matcher.knnMatch(des_Left, des_Right, matches, 2);
 //matcher.knnMatch(des_Right, des_Left, matches, 2);
 std::vector< DMatch > good_matches;
 good_matches.reserve(matches.size());  

 for (size_t i = 0; i < matches.size(); ++i)
 { 
  if (matches[i].size() < 2)
   continue;

  const DMatch &m1 = matches[i][0];
  const DMatch &m2 = matches[i][1];

  if(m1.distance <= 0.7 * m2.distance)        
   good_matches.push_back(m1);     
 }

 //Draw only "good" matches
 Mat img_matches;
    drawMatches( Left, kp_Left, Right, kp_Right, good_matches, 
  img_matches, Scalar::all(-1), Scalar::all(-1), 
  vector< char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
 imshow("Match", img_matches);

    /////////////////
 //Find H
 if(good_matches.size() > 20 )
 {
  std::vector< Point2f >  LeftMatchPT;
  std::vector< Point2f >  RightMatchPT;
  
  for( unsigned int i = 0; i < good_matches.size(); i++ )
  {
   //-- Get the keypoints from the good matches
   LeftMatchPT.push_back( kp_Left[ good_matches[i].queryIdx ].pt );
   RightMatchPT.push_back( kp_Right[ good_matches[i].trainIdx ].pt );
  }

  H = findHomography( RightMatchPT, LeftMatchPT, CV_RANSAC );
  //H = findHomography( LeftMatchPT,RightMatchPT, CV_RANSAC );
 }


 return H;


}

////
The source code
-> here

Comments

  1. hi , i am very interesting in this work , i used and modified it to stitching 2 video files , but i faced some problem , can you help me ,,, because i ma still beginner in this field and need to help ,

    when i press "p" key for processing issue, stopped and given this massage

    "Unhandled exception at 0x00007ffa68fdf8b0 in opencv.exe: 0xC0000005: Access violation reading location 0x0000000000000009."

    can you help me ????

    ReplyDelete
  2. i was sent my problem and video files to your email,,, if you have a time ,,, can you help me to solve my problem ??
    waiting your replay ..
    thank you ..

    ReplyDelete

Post a Comment

Popular posts from this blog

OpenCV Stitching example (Stitcher class, Panorama)

(OpenCV Study) Background subtractor MOG, MOG2, GMG example source code (BackgroundSubtractorMOG, BackgroundSubtractorMOG2, BackgroundSubtractorGMG)

Example source code of extract HOG feature from images, save descriptor values to xml file, using opencv (using HOGDescriptor )

Real-time N camera stitching Class.

8 point algorithm (Matlab source code) / The method to get the Fundamental Matrix and the Essential matrix

Optical Flow sample source code using OpenCV

Video Stabilization example source code, (using cvFindHomography, cvWarpPerspective functions in openCV)

(OpenCV Study) calcOpticalFlowFarneback example source code ( dense optical flow )

yuv422(YUYV) to RGB and RGB to yuv422(YUYV), (Using OpenCV and TBB)

(C, C++) TinyXML , xml read & write