I think this simple example source code is useful to your gpu mode feature matching project.
This is source image.
The RC car is my favorite machine.
The figure is result of surf matching.
Processing time is 0.4028second and 2.4828 fps.
Image size is 1920x1080.
#include < stdio.h> #include < iostream> #include < opencv2\opencv.hpp> #include < opencv2/core/core.hpp> #include < opencv2/highgui/highgui.hpp> #include < opencv2\gpu\gpu.hpp> #include < opencv2\stitching\detail\matchers.hpp > #ifdef _DEBUG #pragma comment(lib, "opencv_core247d.lib") #pragma comment(lib, "opencv_gpu247d.lib") #pragma comment(lib, "opencv_features2d247d.lib") #pragma comment(lib, "opencv_highgui247d.lib") #pragma comment(lib, "opencv_nonfree247d.lib") #else #pragma comment(lib, "opencv_core247.lib") #pragma comment(lib, "opencv_gpu247.lib") #pragma comment(lib, "opencv_features2d247.lib") #pragma comment(lib, "opencv_highgui247.lib") #pragma comment(lib, "opencv_nonfree247.lib") #endif using namespace cv; using namespace std; void main() { gpu::GpuMat img1(imread("C:\\videoSample\\Image\\Picture6.jpg", CV_LOAD_IMAGE_GRAYSCALE)); gpu::GpuMat img2(imread("C:\\videoSample\\Image\\Picture7.jpg", CV_LOAD_IMAGE_GRAYSCALE)); ///////////////////////////////////////////////////////////////////////////////////////// unsigned long t_AAtime=0, t_BBtime=0; float t_pt; float t_fpt; t_AAtime = getTickCount(); ///////////////////////////////////////////////////////////////////////////////////////// gpu::SURF_GPU surf(400); // detecting keypoints & computing descriptors gpu::GpuMat keypoints1GPU, keypoints2GPU; gpu::GpuMat descriptors1GPU, descriptors2GPU; surf(img1, gpu::GpuMat(), keypoints1GPU, descriptors1GPU); surf(img2, gpu::GpuMat(), keypoints2GPU, descriptors2GPU); cout << "FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl; cout << "FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl; // matching descriptors gpu::BruteForceMatcher_GPU< L2< float> > matcher; vector< vector< DMatch> > matches; matcher.knnMatch(descriptors1GPU, descriptors2GPU, matches, 2); // downloading results Gpu -> Cpu vector< KeyPoint> keypoints1, keypoints2; vector< float> descriptors1, descriptors2; surf.downloadKeypoints(keypoints1GPU, keypoints1); surf.downloadKeypoints(keypoints2GPU, keypoints2); //surf.downloadDescriptors(descriptors1GPU, descriptors1); //surf.downloadDescriptors(descriptors2GPU, descriptors2); vector< KeyPoint> matchingKey1, matchingKey2; std::vector< DMatch > good_matches; for(int k = 0; k < min(descriptors1GPU.rows-1,(int) matches.size()); k++) { if((matches[k][0].distance < 0.6*(matches[k][1].distance)) && ((int) matches[k].size()<=2 && (int) matches[k].size()>0)) { good_matches.push_back(matches[k][0]); } } t_BBtime = getTickCount(); t_pt = (t_BBtime - t_AAtime)/getTickFrequency(); t_fpt = 1/t_pt; printf("feature extraction = %.4lf / %.4lf \n", t_pt, t_fpt ); // drawing the results Mat img_matches; Mat img11, img22; img1.download(img11); img2.download(img22); //drawMatches(img11, matchingKey1, img22, matchingKey2, good_matches, img_matches); drawMatches(img11, keypoints1, img22, keypoints2, good_matches, img_matches); //drawKeypoints(img11, keypoints1, img_matches); namedWindow("matches", 0); imshow("matches", img_matches); waitKey(0); }
refer to this posting
optical flow and matching using gpu
http://feelmare.blogspot.kr/2014/07/opencv-study-opticalflow-gpu-feature.html
orb feature and matching using gpu
http://feelmare.blogspot.kr/2014/07/opencv-study-orb-gpu-feature-extraction.html
surf feature and matching using gpu
http://feelmare.blogspot.kr/2014/07/opencv-study-surf-gpu-and-matching.html
No comments:
Post a Comment