Hog feature can computer easy using HOGDescriptor method in opencv.
Visualization is little bit complex. But JΓΌrgen Brauer introduce HOG feature visualization function in his blog.
refer to this page -> http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
I thought he is very excellent researcher in computer vision.
So, I introduce hog feature extraction and visualization using his code.
#include < opencv2\opencv.hpp> #include < stdio.h> #ifdef _DEBUG #pragma comment(lib, "opencv_core249d.lib") #pragma comment(lib, "opencv_imgproc249d.lib") //MAT processing #pragma comment(lib, "opencv_highgui249d.lib") #pragma comment(lib, "opencv_objdetect249d.lib") #else #pragma comment(lib, "opencv_core249.lib") #pragma comment(lib, "opencv_imgproc249.lib") #pragma comment(lib, "opencv_highgui249.lib") #pragma comment(lib, "opencv_objdetect249.lib") #endif #define M_PI 3.1415 using namespace std; using namespace cv; Mat get_hogdescriptor_visual_image(Mat& origImg, vector< float>& descriptorValues, Size winSize, Size cellSize, int scaleFactor, double viz_factor); int main() { Mat img1 = imread("./1.jpg"); Mat img1_gray; cvtColor(img1, img1_gray, CV_RGB2GRAY); Mat r_img1_gray; resize(img1_gray, r_img1_gray, Size(32, 16)); //extractino hog feature HOGDescriptor d1( Size(32,16), Size(8,8), Size(4,4), Size(4,4), 9); // Size(32,16), //winSize // Size(8,8), //blocksize // Size(4,4), //blockStride, // Size(4,4), //cellSize, // 9, //nbins, //feature compare vector< float> descriptorsValues1; vector< Point> locations1; d1.compute( r_img1_gray, descriptorsValues1, Size(0,0), Size(0,0), locations1); //hog visualization Mat r1 = get_hogdescriptor_visual_image(r_img1_gray, descriptorsValues1, Size(32,16), Size(4,4), 10, 5); imshow("hog visualization", r1); waitKey(0); return 0; } Mat get_hogdescriptor_visual_image(Mat& origImg, vector< float>& descriptorValues, Size winSize, Size cellSize, int scaleFactor, double viz_factor) { Mat visual_image; resize(origImg, visual_image, Size(origImg.cols*scaleFactor, origImg.rows*scaleFactor)); cvtColor(visual_image, visual_image, CV_GRAY2BGR); int gradientBinSize = 9; // dividing 180° into 9 bins, how large (in rad) is one bin? float radRangeForOneBin = 3.14/(float)gradientBinSize; // prepare data structure: 9 orientation / gradient strenghts for each cell int cells_in_x_dir = winSize.width / cellSize.width; int cells_in_y_dir = winSize.height / cellSize.height; int totalnrofcells = cells_in_x_dir * cells_in_y_dir; float*** gradientStrengths = new float**[cells_in_y_dir]; int** cellUpdateCounter = new int*[cells_in_y_dir]; for (int y=0; y< cells_in_y_dir; y++) { gradientStrengths[y] = new float*[cells_in_x_dir]; cellUpdateCounter[y] = new int[cells_in_x_dir]; for (int x=0; x< cells_in_x_dir; x++) { gradientStrengths[y][x] = new float[gradientBinSize]; cellUpdateCounter[y][x] = 0; for (int bin=0; bin< gradientBinSize; bin++) gradientStrengths[y][x][bin] = 0.0; } } // nr of blocks = nr of cells - 1 // since there is a new block on each cell (overlapping blocks!) but the last one int blocks_in_x_dir = cells_in_x_dir - 1; int blocks_in_y_dir = cells_in_y_dir - 1; // compute gradient strengths per cell int descriptorDataIdx = 0; int cellx = 0; int celly = 0; for (int blockx=0; blockx< blocks_in_x_dir; blockx++) { for (int blocky=0; blocky< blocks_in_y_dir; blocky++) { // 4 cells per block ... for (int cellNr=0; cellNr< 4; cellNr++) { // compute corresponding cell nr int cellx = blockx; int celly = blocky; if (cellNr==1) celly++; if (cellNr==2) cellx++; if (cellNr==3) { cellx++; celly++; } for (int bin=0; bin< gradientBinSize; bin++) { float gradientStrength = descriptorValues[ descriptorDataIdx ]; descriptorDataIdx++; gradientStrengths[celly][cellx][bin] += gradientStrength; } // for (all bins) // note: overlapping blocks lead to multiple updates of this sum! // we therefore keep track how often a cell was updated, // to compute average gradient strengths cellUpdateCounter[celly][cellx]++; } // for (all cells) } // for (all block x pos) } // for (all block y pos) // compute average gradient strengths for (int celly=0; celly< cells_in_y_dir; celly++) { for (int cellx=0; cellx< cells_in_x_dir; cellx++) { float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx]; // compute average gradient strenghts for each gradient bin direction for (int bin=0; bin< gradientBinSize; bin++) { gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell; } } } cout << "descriptorDataIdx = " << descriptorDataIdx << endl; // draw cells for (int celly=0; celly< cells_in_y_dir; celly++) { for (int cellx=0; cellx< cells_in_x_dir; cellx++) { int drawX = cellx * cellSize.width; int drawY = celly * cellSize.height; int mx = drawX + cellSize.width/2; int my = drawY + cellSize.height/2; rectangle(visual_image, Point(drawX*scaleFactor,drawY*scaleFactor), Point((drawX+cellSize.width)*scaleFactor, (drawY+cellSize.height)*scaleFactor), CV_RGB(100,100,100), 1); // draw in each cell all 9 gradient strengths for (int bin=0; bin< gradientBinSize; bin++) { float currentGradStrength = gradientStrengths[celly][cellx][bin]; // no line to draw? if (currentGradStrength==0) continue; float currRad = bin * radRangeForOneBin + radRangeForOneBin/2; float dirVecX = cos( currRad ); float dirVecY = sin( currRad ); float maxVecLen = cellSize.width/2; float scale = viz_factor; // just a visual_imagealization scale, // to see the lines better // compute line coordinates float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale; float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale; float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale; float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale; // draw gradient visual_imagealization line(visual_image, Point(x1*scaleFactor,y1*scaleFactor), Point(x2*scaleFactor,y2*scaleFactor), CV_RGB(0,0,255), 1); } // for (all bins) } // for (cellx) } // for (celly) // don't forget to free memory allocated by helper data structures! for (int y=0; y< cells_in_y_dir; y++) { for (int x=0; x< cells_in_x_dir; x++) { delete[] gradientStrengths[y][x]; } delete[] gradientStrengths[y]; delete[] cellUpdateCounter[y]; } delete[] gradientStrengths; delete[] cellUpdateCounter; return visual_image; }
Wanted to say thanks for this code, still working beautifully 5 years later!!
ReplyDelete