7/28/2020

Example model metrics using sklearn in face detector case


..

from sklearn.metrics import classification_report
#model 1
y_true = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
y_pred = [0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
target_names = ['Non Face', 'Face']
print(classification_report(y_true, y_pred, target_names=target_names, digits=3))
..



..

#model 2
y_true = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
y_pred = [0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
target_names = ['Non Face', 'Face']
print(classification_report(y_true, y_pred, target_names=target_names, digits=3))
..