pip install lxml
11/29/2020
11/27/2020
get parameter from parameter store of aws system manager, python example code
firstly create parameter in parameter store of AWS system manager
Then get the key from this code.
code
import boto3
ssm = boto3.client('ssm')
parameter = ssm.get_parameter(Name='/project/key_endpoint', WithDecryption=True)
print(parameter['Parameter']['Value'])
.
Labels:
aws,
parameter store,
Python,
ssm,
Total
s3 bucket copy object to another bucket, python example
code
def copy_s3_object(s3_resource, source_bucket_name, source_key, target_bucket_name, target_key):
copy_source = {'Bucket': source_bucket_name, 'Key': source_key}
s3_resource.meta.client.copy(copy_source, target_bucket_name, target_key)
s3_resource = boto3.resource('s3')
copy_s3_object(s3_resource, source_bucket_name, source_key, target_bucket_name, target_key)
.
aws s3 get all object more than 1000 python example code
simply to use paginator instance
example code
paginator = s3_client.get_paginator('list_objects_v2')
pages = paginator.paginate(Bucket='bucket', Prefix='folder1/')
for page in pages:
for obj in page['Contents']:
print(obj['Key'])
.
11/02/2020
sci sparse -> tuple list -> sci sparse
refer to below source code
source code start
from scipy.sparse import csr_matrix
#sci sparse to tuple list
c = A2.tocoo() #A2 is scipy.sparse.csr.csr_matrix
in_edge_idx = list(zip(c.row, c.col)) #make tuple list
#tuple list to sci sparse
two_list = list(map(list, zip(*in_edge_idx))) #tuple 2 tow list of list [[1,2,3], [2,3,4]]
rows = np.array(two_list[0]) #rows
cols = np.array(two_list[1]) #cols
data_num = len(rows) #number of edge
data = np.ones( data_num ) #edge value
dim = len(x_data) #N x N adj
#sci sparse -> tuple list -> sci sparse
re_edge_idx = csr_matrix((data, (rows, cols)), shape=(dim, dim))
print('in', A2, type(A2))
print('re', re_edge_idx, type(re_edge_idx))
#origin A2 and re-generated edge index same?
print( (A2!=re_edge_idx).nnz==0 )
source code end
Subscribe to:
Comments (Atom)
-
Google Coral USB Edge TPU Implementation Guide 1. Installation and Troubleshooting 1.1 Hardware Requirements Google Coral USB Accelerator ...
-
I use MOG2 algorithm to background subtraction. The process is resize to small for more fast processing to blur for avoid noise affectio...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
Video stabilization example source code. The principle is like that... Firstly, to obtain 2 adjacent images extract good feature to t...
-
After training SVM, we should test the trained XML data is reliable or not.. The method to extract HOG feature is refer to -> http://fe...
-
ONNX Runtime with ROCm (AMD GPU) Setup Guide Installation Prerequisites ROCm installed (6.0+ recommended) Python 3.8-3.10 Install ONNX Runti...
-
In past, I wrote an articel about YUV 444, 422, 411 introduction and yuv rgb converting example code. refer to this page -> http://feel...
-
HIP (Heterogeneous - Compute Interface for Portability) provides similar functionality to CUDA streams for asynchronous execution . The...
-
OpenCV has AdaBoost algorithm function. And gpu version also is provided. For using detection, we prepare the trained xml file. Although...