🚙 ANPR (LPR) solution
🏡 detail here : https://www.marearts.com/Automatic-Number-Plate-Recognition-74c24beadd6345fb8d2c6cb38d6fff63
🤖 Live Test : http://live.marearts.com
🔗 GitHub Repository : https://github.com/MareArts/MareArts-ANPR
🇪🇺 ANPR EU (European Union)
https://www.marearts.com/ANPR-EU-European-Union-7fa9a7be04f545f9b8dace2509069291
Auto Number Plate Recognition for EU countries
🦋 Available Countries: (We are adding more contries.)
🇦🇱 Albania 🇦🇩 Andorra 🇦🇹 Austria 🇧🇪 Belgium 🇧🇦 Bosnia and Herzegovina 🇧🇬 Bulgaria 🇭🇷 Croatia 🇨🇾 Cyprus 🇨🇿 Czechia 🇩🇰 Denmark 🇫🇮 Finland 🇫🇷 France 🇩🇪 Germany 🇬🇷 Greece 🇭🇺 Hungary 🇮🇪 Ireland 🇮🇹 Italy 🇱🇮 Liechtenstein 🇱🇺 Luxembourg 🇲🇹 Malta 🇲🇨 Monaco 🇲🇪 Montenegro 🇳🇱 Netherlands 🇲🇰 North Macedonia 🇳🇴 Norway 🇵🇱 Poland 🇵🇹 Portugal 🇷🇴 Romania 🇸🇲 San Marino 🇷🇸 Serbia 🇸🇰 Slovakia 🇸🇮 Slovenia 🇪🇸 Spain 🇸🇪 Sweden 🇨🇭 Switzerland 🇬🇧 United Kingdom 🇮🇩 Indonesia,..
🇰🇷 ANPR KR (Korea)
https://www.marearts.com/ANPR-Korea-8b978dc6c1e54686a6f1eadf58f5570c
🇨🇳 China ANPR
📧 Email us: hello@marearts.com, ask.marearts@gmail.com
for further information.
📺 ANPR Result Videos
https://www.youtube.com/playlist?list=PLvX6vpRszMkxJBJf4EjQ5VCnmkjfE59-J
#anpr, #lpr, #marearts, #marearts-anpr, #licensepalterecognition, #alpr
anpr, lpr, marearts, marearts-anpr, licensepalterecognition, alpr
MareArts Computer Vision Study.
Computer Vision & Machine Learning Research Laboratory
1/11/2026
1/09/2026
Step-by-Step: Building MIOpen and hipDNN with Ninja
Step-by-Step: Building MIOpen and hipDNN with Ninja
Step 1: Navigate to the monorepo
git clone https://github.com/ROCm/rocm-libraries.git
>cd rocm-libraries
Step 2: Create a build directoryWhat this does: Or if you want to limit parallel jobs (e.g., for memory constraints):
If you need more control, you can add these flags:
After successful build, you'll have:
mkdir -p build_miopen_hipdnn
cd build_miopen_hipdnn
Step 3: Configure with CMake using Ninja
cmake -GNinja -B . -S .. \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/opt/rocm \
-DCMAKE_PREFIX_PATH=/opt/rocm \
-DROCM_LIBS_ENABLE_COMPONENTS="miopen;hipdnn"
- -GNinja - Use Ninja build system (faster than Make)
- -DCMAKE_BUILD_TYPE=Release - Optimized build
- -DCMAKE_INSTALL_PREFIX=/opt/rocm - Install location
- -DCMAKE_PREFIX_PATH=/opt/rocm - Where to find ROCm dependencies
- -DROCM_LIBS_ENABLE_COMPONENTS="miopen;hipdnn" - Build only these two projects + their dependencies
Step 4: Build both projects
ninja -j$(nproc)
ninja -j8
Step 5: Run tests (optional)
# Test everything
ninja check
# Or test specific components
ninja test
Step 6: Install (optional)
sudo ninja install
Alternative: Build with specific options
cmake -GNinja -B . -S .. \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/opt/rocm \
-DCMAKE_PREFIX_PATH=/opt/rocm \
-DROCM_LIBS_ENABLE_COMPONENTS="miopen;hipdnn" \
-DBUILD_DEV=ON \
-DCMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-DMIOPEN_BACKEND=HIP
Useful Ninja Commands
# Build only MIOpen
ninja miopen
# Build only hipDNN
ninja hipdnn
# Clean build
ninja clean
# Verbose output (see actual commands)
ninja -v
# Dry run (show what would be built)
ninja -n
# Build specific target
ninja MIOpenDriver
Expected Build Time
- Configuration (CMake): ~30 seconds to 2 minutes
- MIOpen build: ~20-40 minutes (first time)
- hipDNN build: ~5-10 minutes
- Total: ~30-50 minutes on MI250X system
What Gets Built
build_miopen_hipdnn/
├── projects/
│ ├── miopen/
│ │ ├── lib/libMIOpen.so
│ │ ├── bin/MIOpenDriver
│ │ └── test/
│ └── hipdnn/
│ ├── backend/src/libhipdnn.so
│ ├── frontend/
│ ├── plugins/
│ └── tests/
If You Encounter Issues
- Missing dependencies error:# The superbuild should handle this, but if needed:cmake -DROCM_LIBS_ENABLE_COMPONENTS="rocblas;hipblas;composablekernel;miopen;hipdnn" ...
- Out of memory during build:ninja -j4 # Reduce parallel jobs
- See what would be built:ninja -n | grep -E "(miopen|hipdnn)"
Subscribe to:
Comments (Atom)
-
Created Date : 2011.2 Language : C/C++ Tool : Microsoft Visual C++ 2010 Library & Utilized : OpenCV 2.2 Reference : Interent Refer...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
-
* Introduction - The solution shows panorama image from multi images. The panorama images is processing by real-time stitching algorithm...
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
The MNIST dataset is a dataset of handwritten digits, comprising 60 000 training examples and 10 000 test examples. The dataset can be downl...
-
Google Coral USB Edge TPU Implementation Guide 1. Installation and Troubleshooting 1.1 Hardware Requirements Google Coral USB Accelerator ...
-
Created Date : 2011.10 Language : C/C++ Tool : Microsoft Visual C++ 2008 Library & Utilized : OpenCV 2.3 Reference : SIFT referenc...
-
Created Date : 2009.10. Language : C++ Tool : Visual Studio C++ 2008 Library & Utilized : Point Grey-FlyCapture, Triclops, OpenCV...
-
RTSP(Real Time Streaming Protocol) is video streaming, it usually sent from network camera. VideoCapture function in opencv also can get r...
-
I use MOG2 algorithm to background subtraction. The process is resize to small for more fast processing to blur for avoid noise affectio...