import matplotlib.pyplot as plt
from sklearn.metrics import roc_auc_score, average_precision_score
from sklearn import metrics
gt = [1, 0, 1, 0, 1, 1] #origin
pre = [0.9, 0.5, 0.8, 0.4, 0.5, 0.8] #predict
fpr, tpr, thresholds = metrics.roc_curve(gt, pre)
roc_auc = metrics.auc(fpr, tpr)
fig, ax = plt.subplots(figsize=(10,7))
ax.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
ax.plot(np.linspace(0, 1, 100),
np.linspace(0, 1, 100),
label='baseline',
linestyle='--')
plt.title('Receiver Operating Characteristic Curve', fontsize=18)
plt.ylabel('TPR', fontsize=16)
plt.xlabel('FPR', fontsize=16)
plt.legend(fontsize=12)
No comments:
Post a Comment