8/25/2025

GPU memory vs shared memory



ceiling technic

 Add the maximum possible remainder (TILE-1) before dividing!


  Simple Example with 10:


  Let's use TILE=10 for easier understanding:


  Without ceiling (wrong):


  11 / 10 = 1 (need 2!) ❌

  19 / 10 = 1 (need 2!) ❌


  With ceiling technique:


  (11 + 9) / 10 = 20 / 10 = 2 ✓

  (19 + 9) / 10 = 28 / 10 = 2 ✓

  (20 + 9) / 10 = 29 / 10 = 2 ✓ (still 2, correct!)

  (21 + 9) / 10 = 30 / 10 = 3 ✓


  Why Add (TILE-1)?


  Think of it like this:


  If remainder = 0 (perfectly divisible):


  20 / 10 = 2.0

  (20 + 9) / 10 = 29 / 10 = 2.9 → 2 (same!)


  If remainder > 0 (needs extra block):


  21 / 10 = 2.1 (remainder 1)

  (21 + 9) / 10 = 30 / 10 = 3.0 → 3 (pushed to next!)


  The Magic:


  Adding (TILE-1):

  - Remainder 0: Adds 0.9999... → stays same integer

  - Remainder ≥1: Adds enough to reach next integer


  Visual Pattern:


  Value | +9 | /10 | Result

  ------|----|----|-------

  10    | 19 | 1.9| 1 ✓

  11    | 20 | 2.0| 2 ✓ (jumps up!)

  19    | 28 | 2.8| 2 ✓

  20    | 29 | 2.9| 2 ✓

  21    | 30 | 3.0| 3 ✓ (jumps up!)


  Formula Summary:


  // Ceiling division formula:

  ceil(A/B) = (A + B - 1) / B


  // For our GEMM tiles:

  num_blocks = (matrix_size + tile_size - 1) / tile_size


  It's simple: "Add almost one tile, then divide" - this guarantees rounding up!

CK Tile Tutorial Day 2 (AMD hip programming) - Simple GEMM.

 Concepts Added:

  • 2D grid/block configuration
  • Matrix multiplication basics
  • Each thread computes one output element

Key Pattern:

// Each thread computes C[row][col]
for (int k = 0; k < K; k++) {
    sum += A[row][k] * B[k][col];
}
.
=== Thread Mapping Visualization ===
Each thread computes one C[i][j]:

  Block(0,0)        Block(1,0)
  ┌─────────┐      ┌─────────┐
  │T00 T01..│      │T00 T01..│
  │T10 T11..│      │T10 T11..│
  │... ... ..│      │... ... ..│
  └─────────┘      └─────────┘
       ↓                ↓
  C[0:16,0:16]    C[0:16,16:32]

Each thread's work:
  for k in 0..K:
    sum += A[row][k] * B[k][col]
  C[row][col] = sum

=== Step 2: Simple GEMM ===
Matrix multiply: (64x64) * (64x64) = (64x64)
Launching with grid(4,4), block(16,16)
Result: CORRECT
Time: 0.4232 ms
Performance: 1.23887 GFLOPS

=== Step 2: Simple GEMM ===
Matrix multiply: (128x128) * (128x128) = (128x128)
Launching with grid(8,8), block(16,16)
Result: CORRECT
Time: 0.03824 ms
Performance: 109.684 GFLOPS

Key Concepts Added:
1. 2D grid/block configuration
2. Each thread computes one output element
3. Row-major vs column-major layouts
4. Performance measurement (GFLOPS)
..

code
.
// Step 2: Simple GEMM (Matrix Multiplication)
// Building on Step 1, now each thread computes one output element

#include <hip/hip_runtime.h>
#include <iostream>
#include <vector>

// ============================================
// PART 1: Kernel Arguments
// ============================================
struct SimpleGemmKernelArgs {
const float* a_ptr; // M x K matrix
const float* b_ptr; // K x N matrix
float* c_ptr; // M x N matrix
int M;
int N;
int K;
SimpleGemmKernelArgs(const float* a, const float* b, float* c,
int m, int n, int k)
: a_ptr(a), b_ptr(b), c_ptr(c), M(m), N(n), K(k) {}
};

// ============================================
// PART 2: The Kernel (One thread per output)
// ============================================
struct SimpleGemmKernel {
static dim3 GridSize(const SimpleGemmKernelArgs& args) {
// 16x16 threads per block
int grid_m = (args.M + 15) / 16;
int grid_n = (args.N + 15) / 16;
return dim3(grid_n, grid_m, 1); // Note: x=N, y=M
}
static dim3 BlockSize() {
return dim3(16, 16, 1); // 16x16 = 256 threads
}
__device__ void operator()(const SimpleGemmKernelArgs& args) const {
// Each thread computes one element of C
int col = blockIdx.x * blockDim.x + threadIdx.x; // N dimension
int row = blockIdx.y * blockDim.y + threadIdx.y; // M dimension
// Bounds check
if (row >= args.M || col >= args.N) return;
// Compute dot product for C[row][col]
float sum = 0.0f;
for (int k = 0; k < args.K; k++) {
// A is row-major: A[row][k] = A[row * K + k]
// B is column-major: B[k][col] = B[k + col * K]
float a_val = args.a_ptr[row * args.K + k];
float b_val = args.b_ptr[k + col * args.K];
sum += a_val * b_val;
}
// Store result (C is row-major)
args.c_ptr[row * args.N + col] = sum;
}
};

// ============================================
// PART 3: Host Code
// ============================================
__global__ void simple_gemm_kernel(SimpleGemmKernelArgs args) {
SimpleGemmKernel kernel;
kernel(args);
}

void run_simple_gemm(int M, int N, int K) {
std::cout << "\n=== Step 2: Simple GEMM ===\n";
std::cout << "Matrix multiply: (" << M << "x" << K << ") * ("
<< K << "x" << N << ") = (" << M << "x" << N << ")\n";
// Allocate host memory
std::vector<float> h_a(M * K);
std::vector<float> h_b(K * N);
std::vector<float> h_c(M * N, 0.0f);
// Initialize with simple values
for (int i = 0; i < M * K; i++) h_a[i] = 1.0f;
for (int i = 0; i < K * N; i++) h_b[i] = 2.0f;
// Allocate device memory
float *d_a, *d_b, *d_c;
hipMalloc(&d_a, M * K * sizeof(float));
hipMalloc(&d_b, K * N * sizeof(float));
hipMalloc(&d_c, M * N * sizeof(float));
// Copy to device
hipMemcpy(d_a, h_a.data(), M * K * sizeof(float), hipMemcpyHostToDevice);
hipMemcpy(d_b, h_b.data(), K * N * sizeof(float), hipMemcpyHostToDevice);
// Create kernel arguments
SimpleGemmKernelArgs args(d_a, d_b, d_c, M, N, K);
// Get launch configuration
dim3 grid = SimpleGemmKernel::GridSize(args);
dim3 block = SimpleGemmKernel::BlockSize();
std::cout << "Launching with grid(" << grid.x << "," << grid.y
<< "), block(" << block.x << "," << block.y << ")\n";
// Launch kernel
hipEvent_t start, stop;
hipEventCreate(&start);
hipEventCreate(&stop);
hipEventRecord(start);
simple_gemm_kernel<<<grid, block>>>(args);
hipEventRecord(stop);
hipEventSynchronize(stop);
float milliseconds = 0;
hipEventElapsedTime(&milliseconds, start, stop);
// Copy result back
hipMemcpy(h_c.data(), d_c, M * N * sizeof(float), hipMemcpyDeviceToHost);
// Verify (each element should be K * 1.0 * 2.0 = 2K)
float expected = 2.0f * K;
bool correct = true;
for (int i = 0; i < std::min(10, M*N); i++) {
if (h_c[i] != expected) {
correct = false;
break;
}
}
std::cout << "Result: " << (correct ? "CORRECT" : "WRONG") << "\n";
std::cout << "Time: " << milliseconds << " ms\n";
// Calculate FLOPS
double flops = 2.0 * M * N * K; // 2 ops per multiply-add
double gflops = (flops / milliseconds) / 1e6;
std::cout << "Performance: " << gflops << " GFLOPS\n";
// Cleanup
hipFree(d_a);
hipFree(d_b);
hipFree(d_c);
hipEventDestroy(start);
hipEventDestroy(stop);
}

// ============================================
// VISUALIZATION: How threads map to output
// ============================================
void visualize_thread_mapping() {
std::cout << "\n=== Thread Mapping Visualization ===\n";
std::cout << "Each thread computes one C[i][j]:\n\n";
std::cout << " Block(0,0) Block(1,0)\n";
std::cout << " ┌─────────┐ ┌─────────┐\n";
std::cout << " │T00 T01..│ │T00 T01..│\n";
std::cout << " │T10 T11..│ │T10 T11..│\n";
std::cout << " │... ... ..│ │... ... ..│\n";
std::cout << " └─────────┘ └─────────┘\n";
std::cout << " ↓ ↓\n";
std::cout << " C[0:16,0:16] C[0:16,16:32]\n\n";
std::cout << "Each thread's work:\n";
std::cout << " for k in 0..K:\n";
std::cout << " sum += A[row][k] * B[k][col]\n";
std::cout << " C[row][col] = sum\n";
}

// ============================================
// PART 4: Main
// ============================================
int main() {
std::cout << "MareArts CK Tile Tutorial - Step 2: Simple GEMM\n";
std::cout << "======================================\n";
visualize_thread_mapping();
// Run with different sizes
run_simple_gemm(64, 64, 64);
run_simple_gemm(128, 128, 128);
std::cout << "\nKey Concepts Added:\n";
std::cout << "1. 2D grid/block configuration\n";
std::cout << "2. Each thread computes one output element\n";
std::cout << "3. Row-major vs column-major layouts\n";
std::cout << "4. Performance measurement (GFLOPS)\n";
std::cout << "\nProblem: Each thread reads K elements from A and B\n";
std::cout << " → Poor memory reuse!\n";
std::cout << "Next: Add tiling and shared memory for efficiency\n";
return 0;
}
..

🙇🏻‍♂️
MareArts

8/24/2025

CK Tile Tutorial Day 1 (AMD hip programming) - Vector add.

.

Concepts:

  • Basic kernel structure: Args → Kernel → operator()
  • Grid/Block configuration
  • One thread per element processing

Key Code:

struct VectorAddKernel {
    __device__ void operator()(args) {
        int idx = blockIdx.x * blockDim.x + threadIdx.x;
        c[idx] = a[idx] + b[idx];
    }
};


..

code

..

// Step 1: Simplest CK Tile Kernel - Vector Addition
// This demonstrates the absolute basics of CK Tile

#include <hip/hip_runtime.h>
#include <iostream>
#include <vector>

// ============================================
// PART 1: Kernel Arguments (Host → Device)
// ============================================
struct VectorAddKernelArgs {
const float* a_ptr;
const float* b_ptr;
float* c_ptr;
int n;
// Constructor from host arguments
VectorAddKernelArgs(const float* a, const float* b, float* c, int size)
: a_ptr(a), b_ptr(b), c_ptr(c), n(size) {}
};

// ============================================
// PART 2: The Kernel
// ============================================
struct VectorAddKernel {
// Static method to get grid size (how many blocks)
static dim3 GridSize(const VectorAddKernelArgs& args) {
// 256 threads per block, divide work
int blocks = (args.n + 255) / 256;
return dim3(blocks, 1, 1);
}
// Static method to get block size (threads per block)
static dim3 BlockSize() {
return dim3(256, 1, 1);
}
// The actual kernel function - called by each thread
__device__ void operator()(const VectorAddKernelArgs& args) const {
// Calculate global thread index
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// Check bounds
if (idx < args.n) {
// Each thread does one element
args.c_ptr[idx] = args.a_ptr[idx] + args.b_ptr[idx];
}
}
};

// ============================================
// PART 3: Host Launch Function
// ============================================
__global__ void vector_add_kernel(VectorAddKernelArgs args) {
VectorAddKernel kernel;
kernel(args);
}

void run_vector_add(int n) {
std::cout << "\n=== Step 1: Vector Addition ===\n";
std::cout << "Adding two vectors of size " << n << "\n";
// Allocate host memory
std::vector<float> h_a(n, 1.0f);
std::vector<float> h_b(n, 2.0f);
std::vector<float> h_c(n, 0.0f);
// Allocate device memory
float *d_a, *d_b, *d_c;
hipMalloc(&d_a, n * sizeof(float));
hipMalloc(&d_b, n * sizeof(float));
hipMalloc(&d_c, n * sizeof(float));
// Copy to device
hipMemcpy(d_a, h_a.data(), n * sizeof(float), hipMemcpyHostToDevice);
hipMemcpy(d_b, h_b.data(), n * sizeof(float), hipMemcpyHostToDevice);
// Create kernel arguments
VectorAddKernelArgs args(d_a, d_b, d_c, n);
// Get launch configuration
dim3 grid = VectorAddKernel::GridSize(args);
dim3 block = VectorAddKernel::BlockSize();
std::cout << "Launching with grid(" << grid.x << "), block(" << block.x << ")\n";
// Launch kernel
vector_add_kernel<<<grid, block>>>(args);
// Copy result back
hipMemcpy(h_c.data(), d_c, n * sizeof(float), hipMemcpyDeviceToHost);
// Verify
bool correct = true;
for (int i = 0; i < std::min(10, n); i++) {
if (h_c[i] != 3.0f) {
correct = false;
break;
}
}
std::cout << "Result: " << (correct ? "CORRECT" : "WRONG") << "\n";
std::cout << "First 5 elements: ";
for (int i = 0; i < std::min(5, n); i++) {
std::cout << h_c[i] << " ";
}
std::cout << "\n";
// Cleanup
hipFree(d_a);
hipFree(d_b);
hipFree(d_c);
}

// ============================================
// PART 4: Main
// ============================================
int main() {
std::cout << "MareArts CK Tile Tutorial - Step 1: Vector Addition\n";
std::cout << "==========================================\n";
// Run with different sizes
run_vector_add(1024);
run_vector_add(10000);
std::cout << "\nKey Concepts Demonstrated:\n";
std::cout << "1. Kernel structure: Args → Kernel → operator()\n";
std::cout << "2. Grid/Block configuration\n";
std::cout << "3. Each thread processes one element\n";
std::cout << "4. Bounds checking for safety\n";
return 0;
}

...


Result

CK Tile Tutorial - Step 1: Vector Addition

==========================================


=== Step 1: Vector Addition ===

Adding two vectors of size 1024

Launching with grid(4), block(256)

Result: CORRECT

First 5 elements: 3 3 3 3 3 


=== Step 1: Vector Addition ===

Adding two vectors of size 10000

Launching with grid(40), block(256)

Result: CORRECT

First 5 elements: 3 3 3 3 3 


Key Concepts Demonstrated:

1. Kernel structure: Args → Kernel → operator()

2. Grid/Block configuration

3. Each thread processes one element

4. Bounds checking for safety



8/22/2025

ONNX Runtime with ROCm (AMD GPU) Setup Guide

ONNX Runtime with ROCm (AMD GPU) Setup Guide

Installation

Prerequisites

  • ROCm installed (6.0+ recommended)
  • Python 3.8-3.10

Install ONNX Runtime with ROCm Support

# 1. Remove existing ONNX Runtime (if any)
pip uninstall -y onnxruntime onnxruntime-gpu

# 2. Install from AMD ROCm repository
# For ROCm 6.4
pip install onnxruntime-rocm -f https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/

# For ROCm 6.2
pip install onnxruntime-rocm -f https://repo.radeon.com/rocm/manylinux/rocm-rel-6.2/

# For ROCm 6.0
pip install onnxruntime-rocm -f https://repo.radeon.com/rocm/manylinux/rocm-rel-6.0/

Verify Installation

import onnxruntime as ort

# Check available providers
print("Available providers:", ort.get_available_providers())

# Should show: ['MIGraphXExecutionProvider', 'ROCMExecutionProvider', 'CPUExecutionProvider']

Simple Usage Example

import onnxruntime as ort
import numpy as np

# Load ONNX model with ROCm
providers = ['ROCMExecutionProvider', 'CPUExecutionProvider']
session = ort.InferenceSession("model.onnx", providers=providers)

# Check which provider is being used
print(f"Using: {session.get_providers()[0]}")

# Prepare input (example: batch_size=1, 3 channels, 640x640 image)
input_data = np.random.randn(1, 3, 640, 640).astype(np.float32)

# Run inference
input_name = session.get_inputs()[0].name
output = session.run(None, {input_name: input_data})

print(f"Output shape: {output[0].shape}")

Advanced: Using MIGraphX (AMD Optimized)

# MIGraphX is AMD's optimized graph execution provider
# It can be faster than ROCMExecutionProvider for some models

providers = [
    'MIGraphXExecutionProvider',  # Fastest on AMD
    'ROCMExecutionProvider',       # Standard ROCm
    'CPUExecutionProvider'         # Fallback
]

session = ort.InferenceSession("model.onnx", providers=providers)

Complete Example: Image Detection

import onnxruntime as ort
import numpy as np
import cv2

def load_model(model_path, use_gpu=True):
    """Load ONNX model with ROCm support"""
    if use_gpu:
        providers = ['MIGraphXExecutionProvider', 'ROCMExecutionProvider', 'CPUExecutionProvider']
    else:
        providers = ['CPUExecutionProvider']
    
    session = ort.InferenceSession(model_path, providers=providers)
    print(f"Model loaded with: {session.get_providers()[0]}")
    return session

def preprocess_image(image_path, size=640):
    """Preprocess image for inference"""
    image = cv2.imread(image_path)
    resized = cv2.resize(image, (size, size))
    rgb = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
    normalized = rgb.astype(np.float32) / 255.0
    transposed = normalized.transpose(2, 0, 1)  # HWC to CHW
    batched = np.expand_dims(transposed, axis=0)  # Add batch dimension
    return batched, image

def run_inference(session, input_data):
    """Run model inference"""
    input_name = session.get_inputs()[0].name
    outputs = session.run(None, {input_name: input_data})
    return outputs

# Usage
model = load_model("rtdetr_fp32.onnx", use_gpu=True)
input_data, original_image = preprocess_image("test.jpg")
outputs = run_inference(model, input_data)

print(f"Detection output shape: {outputs[0].shape}")

Troubleshooting

1. ROCMExecutionProvider not available

# Check ROCm installation
import subprocess
result = subprocess.run(['rocm-smi'], capture_output=True, text=True)
print(result.stdout)

2. Fallback to CPU

If ONNX Runtime falls back to CPU despite having ROCm:

  • Check ROCm version compatibility
  • Verify GPU is visible: rocm-smi
  • Set environment variable: export HIP_VISIBLE_DEVICES=0

3. Performance Tips

  • Use MIGraphXExecutionProvider for best performance on AMD GPUs
  • FP16 models can be faster but may have slight accuracy loss
  • Batch processing improves throughput

Environment Variables

# Select specific GPU
export HIP_VISIBLE_DEVICES=0

# Enable verbose logging
export ORT_ROCM_VERBOSE_LEVEL=1

# Set memory limit (in MB)
export ORT_ROCM_MEM_LIMIT=4096

Performance Comparison

ProviderRelative SpeedUse Case
MIGraphXExecutionProviderFastestProduction, optimized models
ROCMExecutionProviderFastGeneral purpose
CPUExecutionProviderSlowestFallback, debugging

Notes

  • ONNX Runtime ROCm version should match your ROCm installation
  • Not all ONNX operators are supported on ROCm - unsupported ops fall back to CPU
  • For best performance, export models with static shapes