print('-- for example') l = ['Apple', 100, 15.23] for i in l: print(i, type(i)) print('-- dictionary') d = {"Apple":100, "Orange":200, "Banana":300} for k, v in d.items(): #print dictionary print(k, v) print('-- iterator') l = [10, 20, 30] iterator = iter(l) for i in iterator: print(i) print('-- 9*9 ') for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]: print("-- {0} step --".format(n)) for i in [1, 2, 3, 4, 5, 6, 7, 8, 9]: print("{0} * {1} = {2}".format(n, i, n*i)) print('-- break, continue and else example') l = [1, 2, 3, 4, 5, 6, 7, 8, 9] for i in l: if i > 5: break print("Item:{0}".format(i)) for i in l: if i % 2 == 0: continue print("Item: {0}".format(i)) for i in l: if i > 5: break print("Item:{0}".format(i)) else: print("Exit without break") print("Always this is printed") print("-- useful function") list( range(10) ) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] list( range(5,10) ) #[5, 6, 7, 8, 9] list( range(10, 0, -1)) #[10, 9, 8, 7, 6, 5, 4, 3, 2, 1] list( range(10, 20 , 2)) #[10, 12, 14, 16, 18] for i in range(10, 20, 2): print(i) print("-- to get index and value concurrently") l = ['Apple', 'orange', 'Banana'] for i in range(len(l)): print("index:{0}, value:{1}".format(i, l[i])) print("-- enumerate example") l = ["Apple", 100, 15.5] for i in enumerate(l): print(i) for i in enumerate(l, 300): print(i) #list comprehensions l = [1, 2, 3, 4, 5] print( [i ** 2 for i in l] ) #[1, 4, 9, 16, 25] t = ("apple", "banana", "orange") print( [len(i) for i in t] ) #[5, 6, 6] d = {100:"apple", 200:"banana", 300:"orange"} print( [v.upper() for v in d.values() ] ) print( [i ** 3 for i in range(5)] ) #[0, 1, 8, 27, 64] print( [i for i in t if len(i) > 5 ] ) #['banana', 'orange'] l1 = [3, 4, 5] l2 = [1.5, -0.5, 4] print( [x*y for x in l1 for y in l2 ] ) #[4.5, -1.5, 12, 6.0, -2.0, 16, 7.5, -2.5, 20] print("-- filter example") l=[10, 25, 30] IterL = filter(None, l) for i in IterL: print("Item: {0}".format(i)) def GetBiggerThan20(i): return i > 20 print("---") IterL = filter(GetBiggerThan20, l) for i in IterL: print("Item: {0}".format(i)) print("using lambda") IterL = filter(lambda i: i>20, l) for i in IterL: print("Item: {0}".format(i) ) print("-- zip") X = [10, 20, 30] Y = ['A', 'B', 'C'] for i in zip(X, Y): print("Item: {0}".format(i)) RetList = list(zip(X,Y)) [(10, 'A'), (20, 'B'), (30, 'C')] #unzip X2, Y2 = zip(*RetList) X = [10, 20, 30] Y = "ABC" Z = (1.5, 2.5, 3.5) RetList = list(zip(X, Y, Z)) print("another example for zip") X = [10, 20, 30] Y = "ABCD" RetList = list(zip(X, Y)) #[(10, 'A'), (20, 'B'), (30, 'C')] print("-- map function example") L = [1, 2, 3] def Add10(i): return i+10 for i in map(Add10, L): print("Item: {0}".format(i) ) RetList = list( map((lambda i: i+10), L)) print(RetList) X = [1, 2, 3] Y = [2, 3, 4] RetList = list(map(pow, X, Y)) print(RetList) print("--join function example") l = ['Apple', 'Orange', 'Banana'] for i in l: print(i) #--> join form print("\n".join(l)) print("-- processing time compare with noraml print and joint") import time l = range(1000) t = time.mktime(time.localtime()) for i in l: print(i, ) t1 = time.mktime(time.localtime()) - t t = time.mktime(time.localtime()) print(",".join(str(i) for i in l)) t2 = time.mktime(time.localtime()) - t print("for -> Take {0} seconds".format(t1)) print("join -> Take {0} seconds".format(t2)) #result is 0.0 second both.. -.-
1/21/2014
(python study) for a loop (example source)
Subscribe to:
Post Comments (Atom)
-
* Introduction - The solution shows panorama image from multi images. The panorama images is processing by real-time stitching algorithm...
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
In the YUV color format, Y is bright information, U is blue color area, V is red color area. Show the below picture. The picture is u-v col...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
-
This is example source cod of ORB_GPU feature detection and matching. ORB feature is known extraction speed is faster than surf and sift. ...
-
OpenCV has AdaBoost algorithm function. And gpu version also is provided. For using detection, we prepare the trained xml file. Although...
-
In past, I wrote an articel about YUV 444, 422, 411 introduction and yuv rgb converting example code. refer to this page -> http://feel...
-
1. load pre-trained model 2. export onnx 3. load onnx refer to code: . import warnings from torch . jit import TracerWarning warnings . ...
-
refer to code: . import mlflow from sklearn . metrics import adjusted_rand_score , silhouette_score from sklearn . cluster import K...
-
Created Date : 2007.8 Language : Matlab / C++(MFC) Tool : Matlab / Visual C++ 6.0 Library & Utilized : - / OpenGL Reference : ...
No comments:
Post a Comment