import time print( time.time() ) #the timestamp after 1970.1.1 #1393854889.330645 print( time.gmtime() ) #UTC #time.struct_time(tm_year=2014, tm_mon=3, tm_mday=3, tm_hour=13, tm_min=54, tm_sec=49, tm_wday=0, tm_yday=62, tm_isdst=0) print( time.localtime() ) #current time based on system #time.struct_time(tm_year=2014, tm_mon=3, tm_mday=3, tm_hour=22, tm_min=54, tm_sec=49, tm_wday=0, tm_yday=62, tm_isdst=0) t = time.gmtime(1234567890) print( t ) #time.struct_time(tm_year=2009, tm_mon=2, tm_mday=13, tm_hour=23, tm_min=31, tm_sec=30, tm_wday=4, tm_yday=44, tm_isdst=0) print( t.tm_mon ) print( t.tm_hour ) #2 #23 print( time.asctime(t) ) print( time.mktime(t) ) #Fri Feb 13 23:31:30 2009 #1234535490.0 #sleep t = time.time() time.sleep(1) #10 second sleep t2 = time.time() spendtime = t2 - t print( "before timestamp: ", t) print( "after timestamp: ", t2) print( "wait {0} second".format(spendtime)) #before timestamp: 1393855412.738972 #after timestamp: 1393855413.740086 #wait 1.0011141300201416 second from time import localtime, strftime print( strftime( "%B %dth %A %I:%M", localtime() ) ) print( strftime( "%Y-%m-%d %I:%M", localtime() ) ) print( strftime( "%y/%m/%d %H:%M:%S", localtime() ) ) print( strftime("%y/%m/%d %H:%M:%S", localtime() ) ) print( strftime("%x %X", localtime()) ) #March 03th Monday 11:03 #2014-03-03 11:03 #14/03/03 23:03:33 #14/03/03 23:03:33 #03/03/14 23:03:33 import datetime print( datetime.date(2009, 5, 5) ) #2009-05-05 print( datetime.date.fromtimestamp( time.time() ) ) #2014-03-03 print( datetime.date.today() ) #2014-03-03 d = datetime.date.today() print( d.year ) print( d.month ) print( d.day ) print( d.max ) print( d.min ) #2014 #3 #3 #9999-12-31 #0001-01-01 d = datetime.date.today() d2 = d.replace(day=25) print(d, d2) #2014-03-03 2014-03-25 d.timetuple() print( d.toordinal() ) print( d.weekday() ) #735295 #0 -> It means monday. d = datetime.date.today() print( d.isoformat() ) print( d.ctime() ) #2014-03-03 #Mon Mar 3 00:00:00 2014 from datetime import time print( time(7) ) #07:00:00 print( time(8, 14, 20, 3000 ) ) #08:14:20.003000 print( time(hour=3, second=3) ) #03:00:03 print("-----") from datetime import datetime, date, time print( datetime.now() ) print( datetime.today() ) print( datetime.utcnow() ) print( datetime.fromtimestamp(1234567890)) print( datetime.utcfromtimestamp(1234567890)) print( datetime.fromordinal(732421)) d = date(2009, 3, 10) t = time(12, 23, 53) print( datetime.combine(d, t) ) #014-03-03 23:22:08.580259 #2014-03-03 23:22:08.580277 #2014-03-03 14:22:08.580292 #2009-02-14 08:31:30 #2009-02-13 23:31:30 #2006-04-20 00:00:00 #2009-03-10 12:23:53 print("----") from datetime import datetime dt = datetime.now() print( dt.date() ) print( dt.time() ) print( dt.replace(hour=20, second=30 ) ) print( dt.timetuple() ) #2014-03-03 #23:25:15.304432 #2014-03-03 20:25:30.304432 #time.struct_time(tm_year=2014, tm_mon=3, tm_mday=3, tm_hour=23, tm_min=25, tm_sec=15, tm_wday=0, tm_yday=62, tm_isdst=-1) print("----") dt = datetime.now() print( dt.weekday() ) print( dt.isoweekday() ) #0 #1 print(dt.isoweekday()) print(dt.ctime()) print( str(dt) ) #1 #Mon Mar 3 23:27:26 2014 #2014-03-03 23:27:26.117400 print(" timedelta class "); from datetime import timedelta print( timedelta(days=-3 ) ) print( timedelta( hours=7) ) #-3 days, 0:00:00 #7:00:00 print( timedelta(weeks=2, days=3, hours=-3, minutes=30) ) print( timedelta(minutes=3, milliseconds=-20, microseconds=400)) #16 days, 21:30:00 #0:02:59.980400 print("---") from datetime import timedelta td_1 = timedelta(hours = 7 ) td_2 = timedelta(days=-3) print( td_1 + td_2 ) #-3 days, 7:00:00 print( td_1-td_2, td_1+td_2, td_1*4, td_1//3, abs(td_2)) #3 days, 7:00:00 -3 days, 7:00:00 1 day, 4:00:00 2:20:00 3 days, 0:00:00 td_1 = timedelta(hours = 7 ) td_2 = timedelta(days=-3) print( td_1 > td_2 ) print( td_1 < td_2 ) #True #False td_1 = timedelta(hours=24) td_2 = timedelta(seconds=86400) print( td_1 == td_2 ) #True
3/03/2014
Python study, time module, example source code
Subscribe to:
Post Comments (Atom)
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
Created Date : 2011.10 Language : C/C++ Tool : Microsoft Visual C++ 2008 Library & Utilized : OpenCV 2.3 Reference : SIFT referenc...
-
This is data acquisition source code of LMS511(SICK co.) Source code is made by MFC(vs 2008). The sensor is communicated by TCP/IP. ...
-
fig 1. Left: set 4 points (Left Top, Right Top, Right Bottom, Left Bottom), right:warped image to (0,0) (300,0), (300,300), (0,300) Fi...
-
How many GPUs do I need to train a LLM? This is a complicated question in general, but if we assume that you are usin...
-
Let's use a simplified example with just 2 data points and walk through the process with actual numbers. This will help illustrate how ...
-
In past, I wrote an articel about YUV 444, 422, 411 introduction and yuv <-> rgb converting example code. refer to this page -> ht...
-
IREE-Turbine is a package or toolset that combines PyTorch, Torch-MLIR, IREE, and additional tools to provide a comprehensive solution for...
-
To build and run your toy1.cpp code with MLIR, you need to follow these steps. This assumes you are using the Toy language tutorial from...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
No comments:
Post a Comment