item { name: "/m/01g317" id: 1 display_name: "person" } item { name: "/m/0199g" id: 2 display_name: "bicycle" } item { name: "/m/0k4j" id: 3 display_name: "car" } item { name: "/m/04_sv" id: 4 display_name: "motorcycle" } item { name: "/m/05czz6l" id: 5 display_name: "airplane" } item { name: "/m/01bjv" id: 6 display_name: "bus" } item { name: "/m/07jdr" id: 7 display_name: "train" } item { name: "/m/07r04" id: 8 display_name: "truck" } item { name: "/m/019jd" id: 9 display_name: "boat" } item { name: "/m/015qff" id: 10 display_name: "traffic light" } item { name: "/m/01pns0" id: 11 display_name: "fire hydrant" } item { name: "/m/02pv19" id: 13 display_name: "stop sign" } item { name: "/m/015qbp" id: 14 display_name: "parking meter" } item { name: "/m/0cvnqh" id: 15 display_name: "bench" } item { name: "/m/015p6" id: 16 display_name: "bird" } item { name: "/m/01yrx" id: 17 display_name: "cat" } item { name: "/m/0bt9lr" id: 18 display_name: "dog" } item { name: "/m/03k3r" id: 19 display_name: "horse" } item { name: "/m/07bgp" id: 20 display_name: "sheep" } item { name: "/m/01xq0k1" id: 21 display_name: "cow" } item { name: "/m/0bwd_0j" id: 22 display_name: "elephant" } item { name: "/m/01dws" id: 23 display_name: "bear" } item { name: "/m/0898b" id: 24 display_name: "zebra" } item { name: "/m/03bk1" id: 25 display_name: "giraffe" } item { name: "/m/01940j" id: 27 display_name: "backpack" } item { name: "/m/0hnnb" id: 28 display_name: "umbrella" } item { name: "/m/080hkjn" id: 31 display_name: "handbag" } item { name: "/m/01rkbr" id: 32 display_name: "tie" } item { name: "/m/01s55n" id: 33 display_name: "suitcase" } item { name: "/m/02wmf" id: 34 display_name: "frisbee" } item { name: "/m/071p9" id: 35 display_name: "skis" } item { name: "/m/06__v" id: 36 display_name: "snowboard" } item { name: "/m/018xm" id: 37 display_name: "sports ball" } item { name: "/m/02zt3" id: 38 display_name: "kite" } item { name: "/m/03g8mr" id: 39 display_name: "baseball bat" } item { name: "/m/03grzl" id: 40 display_name: "baseball glove" } item { name: "/m/06_fw" id: 41 display_name: "skateboard" } item { name: "/m/019w40" id: 42 display_name: "surfboard" } item { name: "/m/0dv9c" id: 43 display_name: "tennis racket" } item { name: "/m/04dr76w" id: 44 display_name: "bottle" } item { name: "/m/09tvcd" id: 46 display_name: "wine glass" } item { name: "/m/08gqpm" id: 47 display_name: "cup" } item { name: "/m/0dt3t" id: 48 display_name: "fork" } item { name: "/m/04ctx" id: 49 display_name: "knife" } item { name: "/m/0cmx8" id: 50 display_name: "spoon" } item { name: "/m/04kkgm" id: 51 display_name: "bowl" } item { name: "/m/09qck" id: 52 display_name: "banana" } item { name: "/m/014j1m" id: 53 display_name: "apple" } item { name: "/m/0l515" id: 54 display_name: "sandwich" } item { name: "/m/0cyhj_" id: 55 display_name: "orange" } item { name: "/m/0hkxq" id: 56 display_name: "broccoli" } item { name: "/m/0fj52s" id: 57 display_name: "carrot" } item { name: "/m/01b9xk" id: 58 display_name: "hot dog" } item { name: "/m/0663v" id: 59 display_name: "pizza" } item { name: "/m/0jy4k" id: 60 display_name: "donut" } item { name: "/m/0fszt" id: 61 display_name: "cake" } item { name: "/m/01mzpv" id: 62 display_name: "chair" } item { name: "/m/02crq1" id: 63 display_name: "couch" } item { name: "/m/03fp41" id: 64 display_name: "potted plant" } item { name: "/m/03ssj5" id: 65 display_name: "bed" } item { name: "/m/04bcr3" id: 67 display_name: "dining table" } item { name: "/m/09g1w" id: 70 display_name: "toilet" } item { name: "/m/07c52" id: 72 display_name: "tv" } item { name: "/m/01c648" id: 73 display_name: "laptop" } item { name: "/m/020lf" id: 74 display_name: "mouse" } item { name: "/m/0qjjc" id: 75 display_name: "remote" } item { name: "/m/01m2v" id: 76 display_name: "keyboard" } item { name: "/m/050k8" id: 77 display_name: "cell phone" } item { name: "/m/0fx9l" id: 78 display_name: "microwave" } item { name: "/m/029bxz" id: 79 display_name: "oven" } item { name: "/m/01k6s3" id: 80 display_name: "toaster" } item { name: "/m/0130jx" id: 81 display_name: "sink" } item { name: "/m/040b_t" id: 82 display_name: "refrigerator" } item { name: "/m/0bt_c3" id: 84 display_name: "book" } item { name: "/m/01x3z" id: 85 display_name: "clock" } item { name: "/m/02s195" id: 86 display_name: "vase" } item { name: "/m/01lsmm" id: 87 display_name: "scissors" } item { name: "/m/0kmg4" id: 88 display_name: "teddy bear" } item { name: "/m/03wvsk" id: 89 display_name: "hair drier" } item { name: "/m/012xff" id: 90 display_name: "toothbrush" }
10/10/2018
pbtxt file for coco v2 data (90 categories contents)
Labels:
coco v2,
Deep learning,
google object detection api,
pbtxt,
Total
Subscribe to:
Post Comments (Atom)
-
* Introduction - The solution shows panorama image from multi images. The panorama images is processing by real-time stitching algorithm...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
-
In past, I wrote an articel about YUV 444, 422, 411 introduction and yuv rgb converting example code. refer to this page -> http://feel...
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
Created Date : 2007.8 Language : Matlab / C++(MFC) Tool : Matlab / Visual C++ 6.0 Library & Utilized : - / OpenGL Reference : ...
-
fig 1. Left: set 4 points (Left Top, Right Top, Right Bottom, Left Bottom), right:warped image to (0,0) (300,0), (300,300), (0,300) Fi...
-
The MNIST dataset is a dataset of handwritten digits, comprising 60 000 training examples and 10 000 test examples. The dataset can be downl...
-
Created Date : 2009.10. Language : C++ Tool : Visual Studio C++ 2008 Library & Utilized : Point Grey-FlyCapture, Triclops, OpenCV...
-
In the YUV color format, Y is bright information, U is blue color area, V is red color area. Show the below picture. The picture is u-v col...
-
Created Date : 2011.8 Language : Matlab Tool : Matlab 2010 Library & Utilized : - Reference : Multiple View Geometry (Hartly and Z...
No comments:
Post a Comment