7/23/2024

download all files in specific folder from hugging face model

 refer to code:


.

# Download all files from the IP-Adapter/sdxl_models folder
from huggingface_hub import snapshot_download

# Download the sdxl_models folder and its contents
snapshot_download(
repo_id="h94/IP-Adapter",
repo_type="model",
local_dir="./IP-Adapter_sdxl_models",
allow_patterns=["sdxl_models/*"]
)

..


It download all files under the sdxl_models folder.


Thank you.

7/19/2024

Download specific model from hugging face

 refer to code

.

import os
import shutil
from huggingface_hub import hf_hub_download

# Repository name
repo_id = "h94/IP-Adapter"
# Directory to save the downloaded files
local_directory = "./models/image_encoder"

# Ensure the local directory exists
os.makedirs(local_directory, exist_ok=True)

# List of files to download
files_to_download = [
"models/image_encoder/config.json",
"models/image_encoder/model.safetensors",
"models/image_encoder/pytorch_model.bin"
]

# Download each file and move it to the desired directory
for file in files_to_download:
file_path = hf_hub_download(repo_id=repo_id, filename=file)
# Construct the destination path
dest_path = os.path.join(local_directory, os.path.basename(file))
# Move the file to the destination path
shutil.move(file_path, dest_path)
print(f"Downloaded and moved to {dest_path}")

..


Thank you.


other option is

file_path = hf_hub_download(repo_id=repo_id, filename=file, cache_dir=local_directory, force_download=True)


draw image as grid on notebook

simply check below code and example result.

.


def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
# read image prompt
image = Image.open("assets/images/statue.png")
depth_map = Image.open("assets/structure_controls/depth.png")
image_grid([image.resize((256, 256)), depth_map.resize((256, 256))], 1, 2)

..


Thank you.

7/08/2024

Unknown parameter in retrievalConfiguration.vectorSearchConfiguration: "overrideSearchType", must be one of: numberOfResults

 Error in AWS bedrock like:

Unknown parameter in retrievalConfiguration.vectorSearchConfiguration: "overrideSearchType", must be one of: numberOfResults


Solution 

Update boto3 sdk as latest one.

The parameters changed on 2024-03-27.

refer to here: https://awsapichanges.com/archive/changes/cd42c1-bedrock-agent-runtime.html


Thank you!