8/17/2011

Test Direct Linear Transformation in real image.(matlab source)


I tested the Direct Linear Transformation.
But the method doesn't run well in real image.


I tested below process.
1.Left image coordinate, Right image coordinate in real image. It is also matched point.
2.Get R,T between Left, Right Camera. and Calibration matrix from file.
3.make projection P matrix, (P1,P2)
4.Get World 3D coordinate using DLT.
5.Again, Get image coordinate from World 3D coordinate.


The problem..
recovered image point and input image point is not matched.

Below is the matlab code.
And You can down load. here->< Entire Source Code >

--------------------------------------------------------------------------
%%
clc;
clear all;
close all;

%% 데이터 λ‘œλ”©
%% Data Loading
load rotation_matrices.txt
load translation_vectors.txt
load intrinsic_matrix.txt
load distortion_coeffs.txt

R = rotation_matrices;

%R1은 LeftμΉ΄λ©”λΌμ˜ νŒ¨ν„΄νŒμœΌλ‘œ λΆ€ν„°μ˜ Rotation Matrix
%R1 is Rotation Matrix of Left Camera from Pattern board. Pattern Board has origin
%coordinate (0,0,0)
R1 = reshape(R(19,:),3,3);

%R2 is Left Camera Rotation Matrix.
R2 = reshape(R(20,:),3,3);
%T1 is Left Camera Translation Matrix
T1 = translation_vectors(19,:)';
%T1 is right Camera Translation Matrix
T2 = translation_vectors(20,:)';
K = intrinsic_matrix;
%Load Matched Coordinate
load pattern19.txt;
load pattern20.txt;
m1 = pattern19';
m2 = pattern20';




%% Real R,T λ§Œλ“€κΈ°
%% Make Real R,T that is relation between Left, Right Camera
% R,T is made by R1,R2 and T1, T1
RealT = T2-T1; %TλŠ” κ·Έλƒ₯ λΉΌλ©΄ λœλ‹€.
RealR = R2*inv(R1);
RealA=rodrigues(RealR)*180/pi; %This is Angle




%% P1, P2 λ§Œλ“€κΈ°
% Make Projection matrix
P1 = K*[eye(3) zeros(3,1)]; %P1 is reference Camera so P1=K[I:O]
P2 = K*[RealR RealT];




%% 3차원 점 λ§Œλ“€κΈ°
%P1, P2λ₯Ό μ΄μš©ν•œ 3차원 점 볡원
W=[];




%Make 3D coordinate using Direct Linear Transformation
%W is wrold coordinate.
for i=1:5
A=[ m1(1,i)*P1(3,:) - P1(1,:);
m1(2,i)*P1(3,:) - P1(2,:);
m2(1,i)*P2(3,:) - P2(1,:);
m2(2,i)*P2(3,:) - P2(2,:)];
A(1,:) = A(1,:)/norm(A(1,:));
A(2,:) = A(2,:)/norm(A(2,:));
A(3,:) = A(3,:)/norm(A(3,:));
A(4,:) = A(4,:)/norm(A(4,:));



[u d v] = svd(A);
W=[W v(:,4)/v(4,4)];
end




%% λ‹€μ‹œ 3차원 μ μ—μ„œ ν”½μ…€ 점 λ§Œλ“€κΈ°
% Now, make image coordiante using P1, P2 from W matrix.
reip1 = P1*W;
% reip1 is recovered image coordiante
reip1 = [reip1(1,:)./reip1(3,:); reip1(2,:)./reip1(3,:)] %3μ°¨μ›μ—μ„œ λ³΅μ›λœ 이미지 μ’Œν‘œ
% m1 is origin image coordinate
m1(:,1:5) %μ›λž˜ 이미지 μ’Œν‘œ
reip2 = P2*W;
%reip2 is recovered image coordiante
reip2 = [reip2(1,:)./reip2(3,:); reip2(2,:)./reip2(3,:)] %3μ°¨μ›μ—μ„œ λ³΅μ›λœ 이미지 μ’Œν‘œ
%m2 is origin image coordinate
m2(:,1:5) %μ›λž˜ 이미지 μ’Œν‘œ
-------------------------------------------------------------------------



But, Why reip1 != m1 and reip2 != m2 ??
I cann't know the reason..
Please discuss with me the reason~ ^^


(Please understand my bad english ability. If you point out my mistake, I would correct pleasurably. Thank you!!)

No comments:

Post a Comment