Image url : https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh_wmpkWpwViqcc9QN3mh2El8XaefZORTzLnP-1A_trSlaeJl7dx_OL8uqz6ntmUdLsShhsEclQb3LMsGIKYTXX2pZAWVQ2tSqCTBUqT196TW7aG_zBp4MALZZy6rqC2GfI4OcINJCdFd0/s2048/example.jpg
6/30/2021
6/28/2021
CUDA_ARCH_BIN Table for gpu type
CUDA_ARCH_BIN Table for gpu type

Jetson Products
GPU | Compute Capability |
---|---|
Jetson AGX Xavier | 7.2 |
Jetson Nano | 5.3 |
Jetson TX2 | 6.2 |
Jetson TX1 | 5.3 |
Tegra X1 | 5.3 |

Tesla Workstation Products
GPU | Compute Capability |
---|---|
Tesla K80 | 3.7 |
Tesla K40 | 3.5 |
Tesla K20 | 3.5 |
Tesla C2075 | 2.0 |
Tesla C2050/C2070 | 2.0 |

Tesla NVIDIA Data Center Products
GPU | Compute Capability |
---|---|
NVIDIA A100 | 8.0 |
NVIDIA T4 | 7.5 |
NVIDIA V100 | 7.0 |
Tesla P100 | 6.0 |
Tesla P40 | 6.1 |
Tesla P4 | 6.1 |
Tesla M60 | 5.2 |
Tesla M40 | 5.2 |
Tesla K80 | 3.7 |
Tesla K40 | 3.5 |
Tesla K20 | 3.5 |
Tesla K10 | 3.0 |

Quadro Desktop Products
GPU | Compute Capability |
---|---|
Quadro RTX 8000 | 7.5 |
Quadro RTX 6000 | 7.5 |
Quadro RTX 5000 | 7.5 |
Quadro RTX 4000 | 7.5 |
Quadro GV100 | 7.0 |
Quadro GP100 | 6.0 |
Quadro P6000 | 6.1 |
Quadro P5000 | 6.1 |
Quadro P4000 | 6.1 |
Quadro P2200 | 6.1 |
Quadro P2000 | 6.1 |
Quadro P1000 | 6.1 |
Quadro P620 | 6.1 |
Quadro P600 | 6.1 |
Quadro P400 | 6.1 |
Quadro M6000 24GB | 5.2 |
Quadro M6000 | 5.2 |
Quadro K6000 | 3.5 |
Quadro M5000 | 5.2 |
Quadro K5200 | 3.5 |
Quadro K5000 | 3.0 |
Quadro M4000 | 5.2 |
Quadro K4200 | 3.0 |
Quadro K4000 | 3.0 |
Quadro M2000 | 5.2 |
Quadro K2200 | 3.0 |
Quadro K2000 | 3.0 |
Quadro K2000D | 3.0 |
Quadro K1200 | 5.0 |
Quadro K620 | 5.0 |
Quadro K600 | 3.0 |
Quadro K420 | 3.0 |
Quadro 410 | 3.0 |
Quadro Plex 7000 | 2.0 |

Quadro Mobile Products
GPU | Compute Capability |
---|---|
RTX 5000 | 7.5 |
RTX 4000 | 7.5 |
RTX 3000 | 7.5 |
T2000 | 7.5 |
T1000 | 7.5 |
P620 | 6.1 |
P520 | 6.1 |
Quadro P5200 | 6.1 |
Quadro P4200 | 6.1 |
Quadro P3200 | 6.1 |
Quadro P5000 | 6.1 |
Quadro P4000 | 6.1 |
Quadro P3000 | 6.1 |
Quadro P2000 | 6.1 |
Quadro P1000 | 6.1 |
Quadro P600 | 6.1 |
Quadro P500 | 6.1 |
Quadro M5500M | 5.2 |
Quadro M2200 | 5.2 |
Quadro M1200 | 5.0 |
Quadro M620 | 5.2 |
Quadro M520 | 5.0 |
Quadro K6000M | 3.0 |
Quadro K5200M | 3.0 |
Quadro K5100M | 3.0 |
Quadro M5000M | 5.0 |
Quadro K500M | 3.0 |
Quadro K4200M | 3.0 |
Quadro K4100M | 3.0 |
Quadro M4000M | 5.0 |
Quadro K3100M | 3.0 |
Quadro M3000M | 5.0 |
Quadro K2200M | 3.0 |
Quadro K2100M | 3.0 |
Quadro M2000M | 5.0 |
Quadro K1100M | 3.0 |
Quadro M1000M | 5.0 |
Quadro K620M | 5.0 |
Quadro K610M | 3.5 |
Quadro M600M | 5.0 |
Quadro K510M | 3.5 |
Quadro M500M | 5.0 |

NVS Desktop Products
GPU | Compute Capability |
---|---|
NVIDIA NVS 810 | 5.0 |
NVIDIA NVS 510 | 3.0 |
NVIDIA NVS 315 | 2.1 |
NVIDIA NVS 310 | 2.1 |

NVS Mobile Products

GeForce and TITAN Products

GeForce Notebook Products
Subscribe to:
Posts (Atom)
-
Logistic Classifier The logistic classifier is similar to equation of the plane. W is weight vector, X is input vector and y is output...
-
* Introduction - The solution shows panorama image from multi images. The panorama images is processing by real-time stitching algorithm...
-
Background subtractor example souce code. OpenCV support about 3 types subtraction algorithm. Those are MOG, MOG2, GMG algorithms. Det...
-
Image size of origin is 320*240. Processing time is 30.96 second took. The result of stitching The resul...
-
As you can see in the following video, I created a class that stitching n cameras in real time. https://www.youtube.com/user/feelmare/sear...
-
The MNIST dataset is a dataset of handwritten digits, comprising 60 000 training examples and 10 000 test examples. The dataset can be downl...
-
This is data acquisition source code of LMS511(SICK co.) Source code is made by MFC(vs 2008). The sensor is communicated by TCP/IP. ...
-
I use MOG2 algorithm to background subtraction. The process is resize to small for more fast processing to blur for avoid noise affectio...
-
In past, I wrote an articel about YUV 444, 422, 411 introduction and yuv rgb converting example code. refer to this page -> http://feel...
-
Created Date : 2011.10 Language : C/C++ Tool : Microsoft Visual C++ 2008 Library & Utilized : OpenCV 2.3 Reference : SIFT referenc...