12/28/2024

fashion ai dataset, ordered by years

 2024-2023:

  1. DeepFashion2 (2023 Update)
  • 491K images, 801K clothing items
  • 13 clothing categories
  • Paired cross-pose images
  • High resolution (1024x768)
  • Style, occlusion, landmarks annotations
  1. FashionAI (2023)
  • 180K+ images
  • Hierarchical attribute system
  • Focus on e-commerce applications
  • Multi-label classification
  • Fine-grained attribute annotations
  1. ACGPN Dataset (2023)
  • 40K high-resolution images
  • Detailed semantic parsing maps
  • Virtual try-on ready
  • Human pose annotations included

2022-2021:

  1. VITON-HD (2022)
  • 13,679 front-view pairs
  • High resolution (1024x768)
  • Clean background images
  • Precise segmentation masks
  1. LIP Dataset (2022 Version)
  • 50K images
  • 19 semantic parts
  • Instance-level human parsing
  • Multiple viewpoints
  1. Fashion-MNIST+ (2021)
  • Enhanced version of Fashion-MNIST
  • 70K images
  • Additional attribute annotations
  • Higher resolution than original

2020-2019:

  1. DeepFashion2 (Original 2019)
  • 191K images
  • 13 clothing categories
  • Commercial-consumer image pairs
  • Landmark detection
  1. FashionGen (2019)
  • 325K images
  • Multi-modal fashion dataset
  • Text descriptions included
  • Attribute annotations

2018-2017:

  1. ModaNet (2018)
  • 55K street-style images
  • 13 clothing categories
  • Pixel-level segmentation
  • Built on Paperdoll dataset
  1. DeepFashion (2017)
  • 800K images
  • 50 clothing categories
  • Multiple tasks (category/attribute prediction)
  • Landmark detection

2016-2015:

  1. Clothing Co-Parsing (CCP)
  • 2,098 images
  • 59 clothing categories
  • Pixel-level annotations
  • Early benchmark dataset
  1. Fashion10000 (2015)
  • 32K images
  • Basic attribute labels
  • Focus on style classification

Key Trends Over Time:

  1. Resolution: Steady increase from 224x224 to 1024x768+
  2. Dataset Size: Growing from thousands to hundreds of thousands
  3. Annotation Quality: Moving from basic labels to multi-task annotations
  4. Real-world Applicability: More focus on practical use cases
  5. Diversity: Including more poses, styles, and demographics
  6. Task Coverage: From simple classification to complex parsing/virtual try-on

No comments:

Post a Comment